Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Байесовский метод





 

Пусть на изображении выделен некоторый прямоугольный участок (область интереса), который разбит на две области: область окна и область рамки (рис. 5).

Предполагается, что сегментируемый объект полностью попадает внутрь окна, т. е. в рамке находится только фон (Ф), а в окне – как фон, так и объект (Об). Каждой точке (i, j) области интереса поставлен в соответствие вектор признаков Z T =(z1, z2 , …, zn).

Рис. 5. Рамка и окно на изображении

 

Пусть нам известны априорные вероятности принадлежности точки в окне фону Р (Ф) или объекту Р (Об) = 1Р (Ф), величины штрафов за ошибочное отнесение точки объекта к фону С (Ф|Об) и точки фона к объекту С (Об|Ф). Тогда, как показано в литературе [2, 3], из условия минимума средних потерь при классификации точек в окне выводится следующее правило:

 

(18)

где , – многомерные гистограммы признаков Z, построенные в окне и в рамке соответственно, A = [(C (Об | Ф) + С (Ф | Об))/ C (Ф | Об)] – параметр стоимости неправильной классификации. При увеличении значения параметра А уменьшается число точек фона, ошибочно классифицированных как объект. Однако одновременно с этим увеличивается число точек объекта, принятых за точки фона, что может сильно исказить форму объекта. С другой стороны, если уменьшать величину параметра А, то многие точки фона будут классифицированы как объект.

В лабораторной работе реализован частный случай байесовской сегментации - сегментация по правилу , что соответствует равенству штрафов С (Об|Ф) = С (Ф|Об) (А = 2) и равновероятной принадлежности точки в окне как фону, так и объекту Р (Ф) = Р (Об). На рис. 6 приведен пример сегментации только по яркости некоторого тестового изображения и гистограммы, поясняющих правило классификации. Точки, для которых выполняется условие , считаются принадлежащими объекту, а остальные – фону. Результат классификации представляется в виде бинарной матрицы S (i, j), в которой единичные элементы соответствуют точкам объекта на исходном изображении, а нулевые – точкам фона. Для точной сегментации реальных изображений информации только от одного признака часто бывает недостаточно (рис. 7).

Яркости точек, принадлежащих к объекту  
Мода, соответствующая объекту
Мода, соответствующая фону

Изображение объекта (5 бит)
Бинарное изображение а) гистограмма в рамке, б) гистограмма в окне, в) разность двух гистограмм

Рис. 6. Пример сегментации по яркости тестового изображения

 

Изображение объекта(5бит)
Бинарное изображение а) гистограмма в рамке, б) гистограмма в окне, в) разность двух гистограмм

Рис. 7. Пример сегментации по яркости реального изображения

 

Вопрос о том, из каких признаков должен состоять вектор Z, чтобы получить хорошие результаты сегментации в самых разнообразных ситуациях, до сих пор не имеет однозначного ответа. На сегодняшний день широко используются яркостные, градиентные, спектральные и текстурные признаки. В работе выбраны два признака – яркость и норма ее градиента.

К достоинствам байесовского подхода относится то, что он дает возможность использования многомерных гистограмм и позволяет правильно классифицировать объект при изменении его пространственной ориентации. Вместе с тем, требуется перебор многих параметров алгоритма, в том числе разрядности гистограмм признаков и размеров окна для достижения приемлемого результата. Подход на основе анализа гистограмм не учитывает локальной информации о положении точек изображения и их связности, что может не позволить ему эффективно отделить объект от неоднородного фона (рис. 7).







Дата добавления: 2015-09-07; просмотров: 808. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия