Байесовский метод
Пусть на изображении выделен некоторый прямоугольный участок (область интереса), который разбит на две области: область окна и область рамки (рис. 5). Предполагается, что сегментируемый объект полностью попадает внутрь окна, т. е. в рамке находится только фон (Ф), а в окне – как фон, так и объект (Об). Каждой точке (i, j) области интереса поставлен в соответствие вектор признаков Z T =(z1, z2 , …, zn). Рис. 5. Рамка и окно на изображении
Пусть нам известны априорные вероятности принадлежности точки в окне фону Р (Ф) или объекту Р (Об) = 1 – Р (Ф), величины штрафов за ошибочное отнесение точки объекта к фону С (Ф|Об) и точки фона к объекту С (Об|Ф). Тогда, как показано в литературе [2, 3], из условия минимума средних потерь при классификации точек в окне выводится следующее правило:
(18) где , – многомерные гистограммы признаков Z, построенные в окне и в рамке соответственно, A = [(C (Об | Ф) + С (Ф | Об))/ C (Ф | Об)] – параметр стоимости неправильной классификации. При увеличении значения параметра А уменьшается число точек фона, ошибочно классифицированных как объект. Однако одновременно с этим увеличивается число точек объекта, принятых за точки фона, что может сильно исказить форму объекта. С другой стороны, если уменьшать величину параметра А, то многие точки фона будут классифицированы как объект. В лабораторной работе реализован частный случай байесовской сегментации - сегментация по правилу , что соответствует равенству штрафов С (Об|Ф) = С (Ф|Об) (А = 2) и равновероятной принадлежности точки в окне как фону, так и объекту Р (Ф) = Р (Об). На рис. 6 приведен пример сегментации только по яркости некоторого тестового изображения и гистограммы, поясняющих правило классификации. Точки, для которых выполняется условие , считаются принадлежащими объекту, а остальные – фону. Результат классификации представляется в виде бинарной матрицы S (i, j), в которой единичные элементы соответствуют точкам объекта на исходном изображении, а нулевые – точкам фона. Для точной сегментации реальных изображений информации только от одного признака часто бывает недостаточно (рис. 7).
Рис. 6. Пример сегментации по яркости тестового изображения
Рис. 7. Пример сегментации по яркости реального изображения
Вопрос о том, из каких признаков должен состоять вектор Z, чтобы получить хорошие результаты сегментации в самых разнообразных ситуациях, до сих пор не имеет однозначного ответа. На сегодняшний день широко используются яркостные, градиентные, спектральные и текстурные признаки. В работе выбраны два признака – яркость и норма ее градиента. К достоинствам байесовского подхода относится то, что он дает возможность использования многомерных гистограмм и позволяет правильно классифицировать объект при изменении его пространственной ориентации. Вместе с тем, требуется перебор многих параметров алгоритма, в том числе разрядности гистограмм признаков и размеров окна для достижения приемлемого результата. Подход на основе анализа гистограмм не учитывает локальной информации о положении точек изображения и их связности, что может не позволить ему эффективно отделить объект от неоднородного фона (рис. 7).
|