Метод центроидного связывания
Данный метод сегментации основан на активном использовании локальной признаковой информации. Идея метода достаточно проста и кратко может быть описана следующим образом [1]. На плоскости изображения выбирается некоторое число стартовых точек, которые размечаются определенным образом, и осуществляется анализ соседних точек. Если для пары точек, например стартовой и соседней с ней, выполняется условие однородности, то соседняя точка получает ту же метку, что и стартовая. Далее рассматриваются соседи соседей, и процесс разметки производится аналогично. Этот процесс завершается после того, как каждая точка изображения получает какую-либо метку. Если априорно известно число областей сегментации и местоположение стартовых точек (которые должны отстоять на достаточном расстоянии от границ областей), а также простой в вычислительном отношении критерий однородности, то данный метод позволяет построить простые алгоритмы и получить качественные результаты. Указанная ранее априорная информация, как правило, отсутствует, и поэтому практические алгоритмы сегментации не так просты. Рассматриваемый метод в значительно большей степени эмпирический, чем байесовский, и теоретический прогноз результатов работы алгоритма возможен лишь для достаточно простых изображений. Важными моментами алгоритма являются: вид критерия однородности, способ выбора стартовых точек и способ просмотра соседних точек изображения. Не существует конкретных рекомендаций для выбора стартовых точек. Однако в литературе отмечается, что такие точки не должны быть соседними, а при наличии априорной информации о расположении объектов эта информация должна учитываться [4]. При классификации исходного изображения на объект и фон критерий однородности может иметь следующий вид: | f (i, j) – μ| < T, (19)
где μ; - среднее значение яркости точек, принадлежащих объекту, T –фиксированный порог. В простейшем случае осуществляется сканирование изображения слева направо и сверху вниз и сравнение значения яркости текущей анализируемой точки со средним значением яркости уже размеченных точек, но не обязательно представляющих завершенный сегмент изображения. Если эти значения достаточно близки (например, в смысле (19)), то анализируемая точка добавляется к сегменту и среднее значение яркости пересчитывается. Если критерий (19) не выполняется, то анализируемая точка считается принадлежащей фону. Алгоритмам центроидного связывания свойствен ряд недостатков, среди которых можно указать: наличие неопределенности в выборе стартовых точек; зависимость результатов сегментации от порядка просмотра точек изображения; необходимость применения повторной обработки (повторных “проходов” по полю изображения) для ликвидации ложных областей и для слияния в единое целое частей одной области; отсутствие теоретически обоснованных рекомендаций для выбора порога T в зависимостях вида (19). В то же время этот класс алгоритмов представляет несомненный интерес, потому что является единственным допускающим построчный способ обработки изображений. В лабораторной работе предлагается выбрать одну стартовую точку и просмотр производить вокруг нее. На рис. 8 проиллюстрирована зависимость результатов сегментации от выбора начальной (стартовой) точки.
Рис. 8. Влияние выбора стартовой точки на результаты сегментации
|