Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Порядок выполнения работы. 1. Запустите среду MATLAB 6.5.





 

1. Запустите среду MATLAB 6.5.

2. Откройте текст файла, запускающего программу, указанного прподавателем.

3. С помощью пункта “Загрузить кадр” в меню “Файл” загрузите исходное изображение из директории, указанной преподавателем. В качестве исходного изображения можно выбрать любой из содержащихся в этой директории кадров.

4. Изучение метода глобальной пороговой обработки.

4.1. Загрузите первый тестовый объект (пункт “Загрузить объект” в меню “Файл”), указанный преподавателем. Поместите его на фоновое изображение кадра в самую светлую, однородную область. Для этого выберите место расположения объекта по перекрестию, которое можно перемещать с помощью мыши. Щелчком левой кнопки положение объекта на изображении фиксируется.

4.2. Выберите область обработки (интереса) изображения, включающую тестовый объект. Для этого подведите указатель мыши в нужное место экрана и, удерживая левую кнопку, выделите желаемую область обработки. При необходимости можно повторить эту процедуру. В дальнейшем помните, что при щелчке мыши в поле изображения кадра область обработки сбрасывается!

4.3. В меню “Работа” выберите пункт “Пороговая сегментация”. На экране появится график гистограммы яркости в области обработки, а также регулятор величины порога.

4.4. Задайте небольшое значение величины глобального порога и, нажав кнопку “Вычислить”, проведите сегментацию исходного изображения. Зафиксируйте в отчете значение введенного порога T и величину критерия сегментации Q.

4.5. Изменяя значение глобального порога, найдите максимальное значение критерия сегментации Q. Полученные значения T и Q зафиксируйте в отчете.

4.6. Из анализа гистограммы яркости установите порог для сегментации приблизительно 30 %; 50 %; 100 % точек реального изображения объекта (рис. 1). Зафиксируйте в отчете полученные значения T и Q.

4.7. Поместите этот же тестовый объект в более темную однородную область кадра и повторите пп. 4.2 – 4.6.

4.8. Поместите этот же объект в область кадра с неоднородной яркостью и повторите пп. 4.2. – 4.6.

4.9. Повторите пп. 4.2 – 4.8 для другого тестового изображения объекта.

5. Изучение метода центроидного связывания.

5.1. Заново загрузите исходный кадр и поместите в его самую светлую, однородную часть изображение первого тестового объекта. Выберите зону обработки изображения, включающую тестовый объект.

5.2. В меню “Работа” выберите пункт “Центроидное связывание”. Установите порог связывания при T = 5 (значения T и Q зафиксируйте в отчете).

5.3. Нажмите кнопку “Вычислить” и в появившемся окне с помощью перекрестия выберите стартовую точку на объекте. Проанализируйте полученные результаты.

5.4. Оставляя неизменной величину порога связывания Т, подберите такую стартовую точку, при которой достигается максимальное значение критерия сегментации Q.

5.5. Повторяя пп. 5.3, 5.4 для других значений порога связывания Т и координат стартовых точек, обеспечьте наиболее качественную сегментацию данного объекта с точки зрения критерия Q.

5.6. Поместите этот же тестовый объект в более темную однородную область кадра и повторите пп. 5.2 – 5.5.

5.7. Поместите этот же объект в область кадра с неоднородной яркостью и повторите пп. 5.2 – 5.5.

5.8. Повторите пп. 5.2 – 5.7 для другого тестового изображения объекта.

6. Изучение метода пространственного дифференцирования.

6.1. Заново загрузите исходный кадр и поместите в его самую светлую, однородную часть изображение первого тестового объекта. Выберите область обработки изображения, включающую тестовый объект.

6.2. В меню “Работа” выберите пункт “Простр. дифференцирование”. Найдите наилучшую маску, обеспечивающую наилучшую сегментацию с точки зрения критерия Q (результаты п.6 занесите в отчет).

6.3. Поместите этот же тестовый объект в более темную однородную область кадра и повторите п. 6.2.

6.4. Поместите этот же объект в область кадра с неоднородной яркостью и повторите п. 6.2.

6.5. Повторите пп. 6.2 – 6.4 для другого тестового изображения объекта.

7. Изучение Байесовского метода сегментации.

7.1. Заново загрузите исходный кадр и поместите в его самую светлую, однородную часть изображение первого тестового объекта.

7.2. В меню “Работа” выберите пункт “Байесовская сегментация”.

7.3. Выберите область обработки изображения (область окна), включающую тестовый объект и как можно меньше точек окружающего фона.

7.4. Изменяя разрядность гистограмм яркости и градиента, добейтесь наилучшей сегментации с точки зрения критерия Q (результаты п.7 занесите в отчет).

7.5. Увеличьте размеры окна вокруг объекта и повторите п. 7.4. Проанализируйте получаемые гистограммы и результаты сегментации.

7.6. Поместите этот же тестовый объект в более темную однородную область кадра и повторите пп. 7.2 – 7.5.

7.7. Поместите этот же объект в область кадра с неоднородной яркостью и повторите пп. 7.2 – 7.5.

7.8. Повторите пп. 7.2 – 7.6 для другого тестового изображения объекта.

8. Исследование влияния шума.

8.1. Загрузите исходное тестовое изображение.

8.2. В меню “Работа” выберите пункт “Добавить шум”, задайте параметры шума, после чего нажмите на кнопку “Запомнить шум”. Параметры шума задаются преподавателем.

8.3. Повторите пп. 4.3 – 4.5, 5.2 – 5.5, 6.2 – 6.4, 7.2 – 7.4 для одного тестового объекта.

9. Слежение за объектом.

9.1. Загрузите первый кадр из директории, указанной преподавателем, и задайте область интереса, содержащую объект. Из меню “Работа” выберите метод и его параметры, дающие наилучшие результаты (по предыдущим пунктам).

9.2. Запустите алгоритм слежения из меню “Работа” (п. “Слежение за объектом”). Для приостановки алгоритма слежения нажните на кнопку “Закрыть” в системном меню.

9.3. Качество работы алгоритма оцените визуально.

 

 







Дата добавления: 2015-09-07; просмотров: 577. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия