Эфира в формировании понятия поля
В механике Ньютона тела взаимодействуют на расстоянии, и взаимодействие происходит мгновенно. Именно эта мгновенность передачи взаимодействий и обуславливает ненужность какой-либо среды и утверждает принцип дальнедействия. Известно, что Декартом развивалась противоположная точка зрения на природу взаимодействий, согласно которой материя взаимодействует с материей лишь при непосредственном соприкосновении. Таким агентом, передающим взаимодействия от тела к телу, являются частички эфира. Эфир трактуется Декартом как тончайшая жидкость безграничной протяженности, существующая повсюду. Последователем Декарта стал голландский математик и физик X. Гюйгенс. Известны два альтернативных взгляда на природу света — корпускулярная точка зрения, отстаиваемая Ньютоном, согласно которой свет — поток частиц, корпускул. И точка зрения Гюйгенса о волновой природе света, согласно которой свет — это волна, распространяющаяся в упругой механической среде, которая есть светоносный эфир. Наряду со светоносным эфиром для объяснения электрических свойств тел Б. Франклином вводится понятие электрического эфира, а Ф. Эпинусом — понятие магнитной жидкости. Как писал Кельвин: «Многие труженики и мыслители помогли выработать в XIX в. понятие «пленума» — одного и того же эфира, служащего для переноса света, теплоты, электричества и магнетизма». Тем не менее, идея абсолютного пустого пространства одерживает благодаря авторитету Ньютона победу над концепцией эфира вплоть до начала XIX в. И лишь работы Т. Юнга и О. Френеля по изучению явлений интерференции и дифракции света (явления интерференции и дифракции сами по себе свидетельствуют именно о волновой природе света) приводят к возрождению концепции светоносного эфира. Гипотеза упругих колебаний эфира на повестку дня выносила вопрос: неподвижен ли сам эфир или же он движется? Если он движется, то увлекается ли движущимися телами? Для спасения эфира были предприняты попытки различных ученых, которые привели к трем концепциям природы эфира, высветив тем самым конкретные пути для разрешения вопроса о существовании эфира как такового. Первая из них определяла эфир как неподвижную среду, не увлекающуюся движущимися телами. Вторая гласила о полном увлечении эфира движущимися телами, вследствие чего различные слои эфира должны иметь различные скорости. И, наконец, третья точка зрения, высказанная Френелем, о частичном увлечении эфира движущимися телами. Проблемная ситуация в физической теории тотчас же стимулировала постановку экспериментов, в ряду наиболее блистательных из которых — опыт А. Физо и опыт А. Майкельсона. Однако проблема казалась неразрешимой, ибо результаты опытов Физо свидетельствовали о частичном увлечении эфира, результаты опытов Майкельсона — о полном увлечении эфира, явление же аберрации света указывает на то, что если эфир существует, то он неподвижен. Все точки зрения, базирующиеся на динамических теориях эфира, оказались несостоятельными и были опровергнуты специальной теорией относительности Эйнштейна, подготовив, тем не менее, необходимую почву для ее возникновения. Хотя гипотеза эфира была устранена наукой XX в., она оставила, несомненно, важный след в формировании физических понятий. Ведь принятие эфира — это, по существу, принятие точки зрения близкодействия — передачи взаимодействия от одной точки эфира к другой, что привело в исследованиях М. Фарадея и Дж. Максвелла к выработке понятия поля. У Максвелла мы находим констатацию существования поля как реальности и одновременно признание им материальной среды — эфира. Иными словами, поле он рассматривает как возбужденное состояние эфира. В дальнейшем поле как реальность наделяется теми же характеристиками, что и вещество, — энергией, массой, импульсом. К началу XX в. физика изучает материю в двух ее проявлениях — веществе и поле. Обе эти модификации рассматриваются как равноправные, обе обладают такими характеристиками, как энергия, масса, импульс. Частицам вещества приписываются такие свойства, как дискретность, конечность числа степеней свободы, в то время как поле характеризуется непрерывностью распространения в пространстве; бесконечным числом степеней свободы. Структура электромагнитного поля резюмируется в семи уравнениях Максвелла. Эти уравнения отличаются от уравнений механики. Уравнения механики применимы к областям пустого пространства, в которых присутствуют частицы. Уравнения же Максвелла применимы для всего пространства, независимо от того, присутствует ли там вещество (в том числе заряженные тела), иными словами, позволяют проследить изменения поля во времени в любой точке пространства, то есть получить уравнение электромагнитной волны. Уравнения Максвелла позволяют описывать все известные электрические и магнитные явления. Исходя из своих уравнений, после ряда преобразований, Максвелл устанавливает, что электромагнитные волны распространяются с той же скоростью, что и свет, и приходит к выводу о том, что свет — это электромагнитная волна, что было позднее, уже после смерти Максвелла, экспериментально подтверждено Г. Герцем. Поле возникает как развитие идеи эфира, утверждая принцип близкодействия, отвергая представления о пустоте, о вакууме. Интересно следующее обстоятельство: дальнейшая судьба этих понятий приведет к отрицанию существования эфира и свяжет представление о вакууме с наинизшим энергетическим состоянием уже квантованного поля (поля как совокупности виртуальных частиц). Идея же абсолютного пространства свяжется с представлением о неподвижном эфире как об абсолютной системе отсчета. Однако специальная теория относительности лишит эфир его основного механического свойства — абсолютного покоя. Ибо, по словам Эйнштейна, «введение «светоносного» эфира окажется измышлением, поскольку в специальной теории относительности не вводится «абсолютно покоящееся пространство», наделенное особыми свойствами». И эфир, будучи изгнан из физической теории, унесет с собой концепцию дальнодействия и концепции абсолютного пространства и абсолютного времени.
23. Предпосылки возникновения
|