Студопедия — Отпуск сталей.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Отпуск сталей.






Отпуск – термическая обработка, в результате которой в предварительно закаленных сплавах происходят фазовые превращения, приближающие структуру к равновесной. Нагрев ниже линии Ас1 выдержка и охлаждение с определенной скоростью.

Цель снижение внутреннего напряжения, окончательного формирования структуры. При повышение темп отпуска снижается прочность и твердость стали, повышается пластичность и ударная вязкость. Пониженная ударная вязкость называется отпускной хрупкостью.

Отпускная хрупкость: 1-ого рада характерна для всех сталей не зависит от степени легированности; 2-ого рода для легир ст содерж. Cr, V, Al, P при медленном охлаждении. Склонность стали к отп. хрупк. можно снизить с помощью W, Mo.

Виды отпуска:

Низкий отпуск. При 150-200оС. Происходит уменьшение концентрации углерода в М за счет выделения мельчайших частиц карбидов, выявляемых только рентгеноструктурным анализом. Подвергают режущий и мерительный инструмент.

Средний отпуск. 350-400 оС. Полный распад М и образование Т частиц Ф и Ц, различия в строении Т закалки и Т отпуска выявляются с помощью электронно-микроскопического анализа. Т закалки- пластинчатое строение, Т отпуска – зернистое. При среднем отпуске резко повышается упругость стали, но снижается прочность. Подвергаются пружины, рессоры, ударные инструменты.

Высокий отпуск. 500-650 оС образование С отпуска. Твердость 25-35HRS. Более высокий от 650 оС до Ас1 приближает структуру к равновесной, образуется П и обособляется избыточный Ф или Ц-Ф в доэвтектоидных ст. Ц в заэвтектоидных ст. С и Т имеют зернистое строение. При высоком отпуске значительно повышается пластичность и вязкость, но снижается прочность. Термическое улучшение ст – совокупность закалки на мартенсит и последующим высоким отпуском.

 

20.Старение.
Общие сведения. Старением называют изменение свойств сплавов с течением времени. В результате старения изменяются физико-механические свойства. Прочность и твердость повышаются, а пластичность и вязкость понижаются. Старение может происходить при температуре 20° С (естественное старение) или при нагреве до невысоких температур (искусственное старение).

Различают два вида старения:

1) термическое, протекающее в закаленном сплаве;

2) деформационное (механическое), происходящее в сплаве, пластически деформированном при температуре ниже температуры рекристаллизации.

Термическому старению подвергаются сплавы, обладающие ограниченной растворимостью в твердом состоянии, когда растворимость одного компонента в другом уменьшается с понижением температуры. Деформационное старение не связано с диаграммой состояния сплава. К старению склонны многие сплавы железа и сплавы цветных металлов. Результаты старения могут быть разными.

В одних случаях старение является положительным и его используют: 1) при термической обработке алюминиевых, магниевых, титановых и некоторых других цветных сплавов для повышения их прочности и твердости (термическое старение); 2) для упрочнения деталей из пружинных сталей, которые при эксплуатации должны обладать высокими упругими прочностными и усталостными свойствами (деформационное старение).

В других случаях старение является отрицательным: резкое снижение ударной вязкости и повышение порога хладноломкости в результате старения (особенно деформационного) могут явиться причиной разрушения конструкции; ухудшение штампуемосги листовой стали; изменение размеров закаленных деталей и инструмента при естественном старении, что осбенно вредно для точного измерительного инструмента и прецизионных деталей (например, подшипников); размагничивание в процессе эксплуатации стальных закаленных постоянных магнитов; преждевременное разрушение рельсов в пути.

21. ХТО. Процессы, происходящие при ХТО. Закономерности изменения состава и структуры.
ХТО – это сочетание воздействий на деталь химической среды и теплового воздействия с целью изменения химического состава и свойств поверхности детали.

ХТО делится на:

1. ХТО с насыщением не металлами (C, N, Si, B).

2. ХТО с насыщением металлами (Cr, Ni, Ti, Zn).

3. Многокомпонентная ХТО.

Процесс насыщения поверхности детали можно условно разбить на 3 стадии:

1) Создание активных атомов.

2) Перенос активных атомов к поверхности детали и взаимодействие их с поверхностью.

3) Диффузия активных атомов в глубь металлов.

Все эти 3 стадии процесса идут последовательно и поэтому общая скорость ХТО определяется скоростью одной из стадий, идущей наиболее медленно.

Обычно наименьшая скорость – это скорость диффузии в металле. Для ускорения диффузии увеличивают температуру. Чем выше температура, тем быстрее идет диффузия, тем скорее происходит процесс насыщения поверхности детали. Технологический процесс насыщения поверхности детали может происходить по-разному:

1) способ насыщения из порошковых засыпок, т.е. деталь засыпают порошками, содержащими нужные элементы. Способ самоуниверсальный, наиболее доступный. Однако производительность его недостаточна и потребность в большом количестве порошка;

2) насыщение из газовой фазы. Детали помещают в специальные печи с контролируемой газовой атмосферой. Детали на конвейере проходят через печь и после выхода сразу закаливаются. Достоинства: высокая производительность, стабильное качество. Применяется при массовом изготовлении.

3) Насыщение из жидкой среды. При этом способе детали помещают в расплавы солей, щелочей, металлов, содержащих нужный элемент.

4) Насыщение из пасты. Этот способ применяется для местного насыщения детали легирующими элементами.

5) Насыщение вакуумом. Деталь помещают в вакуумную камеру, нагревают и конденсируют на нее атомы легирующих элементов. Применяется для специальных деталей или детали, которые не должны окисляться.

Структура поверхностного слоя в деталях, образующихся при ХТО, зависит от типа взаимодействия насыщающего элемента с металлом, который является основным компонентом в данной детал

Если насыщающий элемент образует неограниченный твердый раствор, то при ХТО наблюдается плавное изменение концентрации и структуры.

22.ВидыХТО.
ХТО с насыщением не металлами:

Цементация стали – насыщение углеродом.

Цементация вызывает процесс насыщения поверхностей деталей углеродом с целью повышения твердости и износостойкости. Цементацию применяют для деталей, в которых твердость поверхности должна сочетаться с вязкой сердцевиной, хорошо выдерживающей ударную нагрузку. Цементации подвергают стали, в которых содержание углерода не превышает 0,1-0,25% С. Насыщением С проводят либо из твердой среды, либо в специальных газовых печах, куда вводятся предельные углеводороды, содержащие большое количество С, твердая среда состоит из угля С = 80%, углекислой соли Ca Co3 Процесс цементации ведется при высоких температурах порядка 900 – 9500С. Такая температура необходима для перехода структуры в аустенитное состояние.

Азотирование - э то насыщение азотом.

Азотирование проводят в специальных газовых печах, куда помещают детали, а затем подается диссоциированный аммиак, т.е. проходит распад аммиака. Диссоциация аммиака проходит в специальных автоклапанах в присутствии катализатора. Это нужно для того, чтобы в печь поступали атомы азота.Температура азотирование 520-550º С, т.е. она не высокая, так как растворимость азота в феррите вполне достаточная.

Сульфатирование – насыщение серой

После сульфоазотирования детали легче прирабатываются друг к другу, снижаются потери энергии, затрачиваемой на вращение детали. Сульфаазотирование чаще проводят из газовой фазы, реже из порошковой засыпки. Глубина насыщенного слоя 0,1-0,2 мм.

Силицирование – насыщение кремнием.

Применяют для деталей, работающих при повышенных температурах. Внедрение Si в поверхность позволяет повысить жаростойкость, т.е. сопротивление поверхности окислению при высоких температурах. После силицирования поверхности образуется окислы кремния, либо двойные окислы Fe Si2 O4 - шпилеты. Температура процесса 1100-1200º С. Глубина слоя достигает 0,8 мм, но продолжительность около суток.

Борирование – насыщение бором.

Применяют для инструмента горячего деформированного металла. При насыщение стальных деталей бором на поверхности образуются бориды: FeB, Ke2B, Fe4B, которые увеличивают твердость и жаростойкость при температуре 800-1000º С, твердость до 700º С не изменяется совсем. Борирование проводится из порошковых засыпок при температурах 1000-1100º С. Глубина слоя после борирования до 80-200 мкм, но стойкость высокая.

ХТО с насыщением металлами (диффузионная металлизация).

При насыщении поверхности детали металлами происходит образование твердых ресурсов по типу замещения, т.е. атомы основного компонента замещаются в кристаллической решетке атомами легирующего элемента. Процесс диффузии по типу замещения идет гораздо медленнее, чем по механизму внедрения. Поэтому процесс диффузионной металлизации требует более высоких температур и длительных выдержек.

Аллитирование. Применяют для стальных и никелевых деталей с целью повышения жаростойкости поверхности, образуются Al2O3. Аллитирование можно проводить двумя способами:

1) Аллитирование из порошковой смеси

В этом случае берут порошок FeAl. Нагревают до температуры 1050-1150º С и выдерживают от двух до двадцати часов. Хлор взаимодействует с Al (ALCL3) и за счет образования этого хлористого Al происходит перенос Аl на поверхность из порошка.

2) Погружение детали в расплав Аl, выдержка в ванне и затем нагрев до рабочей температуры аллитирования.

Хромирование. Применяют с разными целями:

1) Для малоуглеродистых сталей с содержанием С<0,4%, с целью повышения коррозионной стойкости поверхности. В этом случае Сr переходит в твердый раствор и если его концентрация превышает 13%, то сталь становится коррозионно-стойкой.

Глубина насыщения Сr зависит от эксплуатационных характеристик деталей.

2) %С > 0,41% - средне или высоко углеродная сталь. В этом случае хромирование применяют для повышения твердости и износостойкости поверхности. Увеличение твердости происходит за счет образования в сталях карбидов хрома, которые и повышают служебные свойства деталей: Сч23С6.







Дата добавления: 2015-09-07; просмотров: 517. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия