Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Приложение 4.1.





Двухвыборочный t-тест проверяет равенство средних значений генеральной совокупности по каждой выборке. Эти три средства допускают следующие условия: равные дисперсии генерального распределения, дисперсии генеральной совокупности не равны, а также представление двух выборок до и после наблюдения по одному и тому же субъекту.

Для всех трех средств, перечисленных ниже, значение t-статистики t вычисляется и отображается как "t-статистика" в выводимой таблице. В зависимости от данных, это значение t может быть отрицательным или неотрицательным. Если предположить, что средние генеральной совокупности равны, при t < 0 “P(T <= t) одностороннее” дает вероятность того, что наблюдаемое значение t-статистики будет более отрицательным, чем t. При t >=0 “P(T <= t) одностороннее” делает возможным наблюдение значения t-статистики, которое будет более положительным чем t. “t критическое одностороннее” выдает пороговое значение, так что вероятность наблюдения значения t-статистики большего или равного “t критическое одностороннее” равно Alpha.

“P(T <= t) двустороннее” дает вероятность наблюдения значения t-статистики по абсолютному значению большего чем t. “P критическое двустороннее” выдает пороговое значение, так что значение вероятности наблюдения значения t- статистики по абсолютному значению большего “P критическое двустороннее” равно Alpha.

Двухвыборочный t-тест с одинаковыми дисперсиями. Двухвыборочный t-тест Стьюдента служит для проверки гипотезы о равенстве средних для двух выборок. Эта форма t-теста предполагает совпадение значений дисперсии генеральных совокупностей и обычно называется гомоскедастическим t-тестом.

Двухвыборочный t-тест с разными дисперсиями. Двухвыборочный t-тест Стьюдента используется для проверки гипотезы о равенстве средних для двух выборок данных из разных генеральных совокупностей. Эта форма t-теста предполагает несовпадение дисперсий генеральных совокупностей и обычно называется гетероскедастическим t-тестом. Если тестируется одна и та же генеральная совокупность, используйте парный тест.

Для определения тестовой величины t используется следующая формула.

Следующая формула используется для вычисления степени свободы df. Так как результат вычисления обычно не бывает целым числом, значение df округляется до целого для получения порогового значения из t-таблицы. Функция Excel ТТЕСТ по возможности использует вычисленные значения без округления для вычисления значения ТТЕСТ с нецелым значением df. Из-за разницы подходов к определению степеней свободы, результаты функций ТТЕСТ и t-тест будут различаться в случае с разными дисперсиями.

Парный двухвыборочный t-тест для средних. Парный двухвыборочный t-тест Стьюдента используется для проверки гипотезы о различии средних для двух выборок данных. В нем не предполагается равенство дисперсий генеральных совокупностей, из которых выбраны данные. Парный тест используется, когда имеется естественная парность наблюдений в выборках, например, когда генеральная совокупность тестируется дважды — до и после эксперимента.

Примечание. Одним из результатов теста является совокупная дисперсия (совокупная мера распределения данных вокруг среднего значения), вычисляемая по следующей формуле.

Приложение 4.2.

Двухвыборочный F-тест применяется для сравнения дисперсий двух генеральных совокупностей.

Например, можно использовать F-тест по выборкам результатов заплыва для каждой из двух команд. Это средство предоставляет результаты сравнения нулевой гипотезы о том, что эти две выборки взяты из распределения с равными дисперсиями, с гипотезой, предполагающей, что дисперсии различны в базовом распределении.

С помощью этого средства вычисляется значение f F-статистики (или F-коэффициент). Значение f, близкое к 1, показывает, что дисперсии генеральной совокупности равны. В таблице результатов, если f < 1, "P(F <= f) одностороннее” дает возможность наблюдения значения F-статистики меньшего f при равных дисперсиях генеральной совокупности и F критическом одностороннем выдает критическое значение меньше 1 для выбранного уровня значимости Alpha. Если f > 1, “P(F <= f) одностороннее” дает возможность наблюдения значения F-статистики большего f при равных дисперсиях генеральной совокупности и F критическом одностороннем выдает критическое значение большее 1 для Alpha.

 

 

Приложение 4.3.

Скользящее среднее используется для расчета значений в прогнозируемом периоде на основе среднего значения переменной для указанного числа предшествующих периодов.

Скользящее среднее, в отличие от простого среднего для всей выборки, содержит сведения о тенденциях изменения данных. Этот метод может использоваться для прогноза сбыта, запасов и других процессов. Расчет прогнозируемых значений выполняется по следующей формуле.

где:

· N — число предшествующих периодов, входящих в скользящее среднее;

· Aj — фактическое значение в момент времени j;

· Fj — прогнозируемое значение в момент времени j.

 







Дата добавления: 2015-10-01; просмотров: 518. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия