Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод двоичного разбиения пространства





Теперь разберем один способ использования метода художника при изображении пространственных сцен, содержащих несколько объектов или составные объекты. Это так называемый метод двоичного разбиения пространства плоскостями. Плоскости, как обычно, будут задаваться с помощью вектора нормали и расстояния до начала координат (с точностью до знака). Пусть изображаемая сцена состоит из набора непересекающихся граней (они могут иметь общие прямолинейные участки границы). Проведем плоскость , разбивающую все пространство на два полупространства, в одном из которых находится наблюдатель. Предположим, что плоскость при этом не пересекает ни одну из граней (но может содержать участок ее границы). Тогда грани, находящиеся в одном полупространстве с наблюдателем, могут заслонять от него часть граней из второго полупространства, но не наоборот. Это означает, что они должны изображаться позже. Разобьем плоскостью второе полупространство и снова определим, какая группа граней из него должна изображаться раньше. Продолжая этот процесс до того уровня, когда все пространство будет разбито плоскостями на секции, в каждой из которых будет находиться только одна грань, мы получим упорядоченный набор граней. Этот порядок можно изобразить в виде двоичного дерева. В контексте рассматриваемого алгоритма это дерево представляет собой структуру данных , элементами которой являются указатель на грань изображаемой сцены, плоскость, отделяющая эту грань, указатели на левое и правое поддерево и . Такой элемент называется узлом дерева.

В каждом узле дерева левое поддерево будет содержать грани, отделенные плоскостью, а правое - не отделенные. Рисование сцены осуществляется с помощью рекурсивного алгоритма следующего вида:

Рис. 7.6. Разбиение пространства и соответствующее ему дерево

Построение плоскостей и дерева в данном случае осуществляется "вручную". Для эффективности работы алгоритма надо стремиться к тому, чтобы дерево было сбалансированным. Если какие-то грани не удается отделить, то их пересекают плоскостями и рисуют как два объекта. Способ определения, по какую сторону плоскости находится наблюдатель, а по какую - грань, очень прост. Параметр плоскости для каждой грани будем задавать так, чтобы грань находилась в положительной полуплоскости. Тогда если при подстановке координат наблюдателя в это уравнение получаем положительное значение, то он находится в одной полуплоскости с гранью, если нет, то в разных.

Алгоритм может применяться не только к многогранникам, но и вообще к любой сцене при условии, что имеется алгоритм изображения составляющих ее объектов. На рис. 7.6 изображена проекция сцены, разбитой вертикальными плоскостями, и соответствующее ей дерево. Положение наблюдателя отмечено кружком с буквой Н. При этой точке зрения объекты будут изображаться в последовательности 5, 6, 1, 2, 3, 4.







Дата добавления: 2015-10-01; просмотров: 1276. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия