Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ВЫЧИСЛЕНИЕ ПОГРЕШНОСТЕЙ ПРИ КОСВЕННЫХ ИЗМЕРЕНИЯХ





 

В большинстве экспериментов интересующая нас величина непосредственно не измеряется. Вместо этого измеряются другие величины (аргументы) и т.д., а затем искомая величина вычисляется на основе заданной функциональной зависимости

(11)

Если для каждого аргумента в выражении (11) экспериментально найдены средние значения и вычислены погрешности , то за наилучшее приближение для величины принимается значение

получающееся при подстановке в выражение (11) вместо истинных значений аргументов их средних экспериментальных значений.

Доверительная погрешность косвенных измерений величины определяется погрешностями прямых измерений (однократных или многократных) всех аргументов , входящих в формулу (11).

Полное приращение функции , обусловленное изменением ее аргументов на малые величины , может быть, как известно из курса высшей математики, c достаточной точностью вычислено по формуле

, (12)

где , , частные производные функции по ее соответствующим аргументам. При вычислении частной производной все аргументы функции кроме того, по которому производится дифференцирование, считаются постоянными.

Рассматривая в выражении (12) величины как погрешности прямых (однократных или многократных) измерений аргументов , можем считать каждый из слагаемых правой части этой формулы вкладом в общую погрешность измерений функции . Полагая эти вклады независимыми, по принятому в математической статистике закону сложения погрешностей получаем общую формулу для вычисления погрешности при косвенных измерениях

. (13)

Таким образом, для того чтобы определить абсолютную погрешность результата косвенного измерения, следует найти частные производные функции по всем аргументам, подставить в них найденные на предыдущем этапе измерений средние значения аргументов и провести расчет по формуле (13).

При расчете погрешностей по формуле (13) допустимо пренебрегать теми слагаемыми подкоренного выражения, которые по крайней мере в 2 – 3 раза меньше максимального. (коэффициент 3 применяется в тех случаях, когда слагаемых много и малые погрешности могут внести заметный вклад в общую погрешность). Это соображение существенно упрощает расчет погрешности, а также позволяет четко выявить тот аргумент, погрешность которого имеет определяющее значение. Данный подход удобен при обсуждении результатов и важен для поиска путей повышения точности результатов.

Если искомая функция удобна для логарифмирования (представляет собой произведение простых функций измеряемых аргументов), учитывают, что полное приращение функции может быть с достаточной точностью рассчитано по формуле

, (14)

и вместо выражения (13) получают следующее соотношение

. (15)

Заметим, что правая часть выражения (15) дает значение относительной погрешности результата данного косвенного измерения.

Окончательно рекомендуется следующий алгоритм обработки результатов косвенных измерений.

1. Выполнить (однократные или многократные) прямые измерения аргументов измеряемой функции

; ; .

(Подразумевается, что величина является результатом однократного прямого измерения.)

2. Найти среднеарифметические значение аргументов

; ; .

3. Вычислить абсолютные погрешности отдельных результатов наблюдений для каждого аргумента (при многократных его измерениях), а также их квадраты и соответствующие суммы

;

4. Для данных значений и найти по таблице коэффициент Стьюдента и вычислить погрешности аргументов (случайные или приборные)

. . .

5. Если функция удобна для логарифмирования, прологарифмировать ее и по формуле (15) вычислить относительную погрешность

.

В противном случае опредлить доверительную погрешность результата измерений по общей формуле (13)

.

6. Вычислить предварительный результат измерений

.

7. Округлив результат измерений и погрешность, записать окончательный результат в виде

 







Дата добавления: 2015-10-01; просмотров: 600. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия