Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЗАНЯТИЕ 2





ТЕМА. ПРЕОБРАЗОВАНИЕ КООРДИНАТ. КО- КОНТРАВАРИАНТНЫЕ ВЕЛИЧИНЫ

п.1. Преобразование координат характеризуется соотношением и выражает отображение областей изменения переменных и друг на друга. Штрих в дальнейшем означает переменную в новой системе координат. Отображение является непрерывным, взаимно однознач-ным, если якобиан преобразования ; при этом якобиан обратного преобразования .

Задача 1. Записать явный вид соотношения , если – декартовы координаты, а – сферические (рис.1), и якобиана .

Ответ.

Задача 2. Записать явный вид преобразования, обратного указанному выше.

Ответ: .

Поменяв местами штрих, придем к записи . Особые точки преобразования .

п.2. Преобразование .

Задача 3. Записать формулу преобразования дифференциала координат при преобразовании .

Решение. При условии, что – дифференцируемая по всем переменным функция, можно записать: .

Результат можно представить в матричной форме: .

Задача 4. Вывести формулу преобразования базисных векторов .

Решение. Исходим из определения . По формуле дифференцирования сложных функций имеем: . Получаем искомую формулу преобразования:

.

Преобразование базисных векторов и дифференциалов осуществляется с помощью матриц и , обратных друг к другу. Поэтому величины с индексами сверху называются контравариантным и по этим индексам (т.е. преобразующихся "противоположно" преобразованию базиса), а величины с индексами внизу называются ковариантными. Полезным для запоминания является мнемоническое правило; ковариантный индекс «производная от новой переменной / по старой.

Задача 5. Какова формула преобразования элементов метрической матрицы при переходе к новым переменным.

Решение. Используем определение .

.

Здесь – значение элемента матрицы преобразования в точке, где выполняется преобразование.

Задача 6. Вывести формулу преобразования .

Решение. Согласно определению . Выполняем преобразования, используя полученные ранее выражения: . По правилу "частного" имеем: . Тогда получаем выражения:

.

Получена формула

.

Задача 7. Показать, что ортогональные проекции вектора на оси косоугольной системы координат преобразуются как ковариантные переменные.

Решение. Ортогональную проекцию вектора на направление вектора будем обозначать . По определению . Базисный вектор в косоугольной, но прямолинейной системе координат, орт. Имеем:

,

т.е. , так преобразуются ковариантные переменные.

Дополнительные задачи

1. Доказать, что если – декартовые координаты, а – произвольные криволинейные, связанные соотношением , то компоненты метрической матрицы удовлетворяют равенству .

2. Используя связь декартовых и сферических координат, получить элементы метрической матрицы в сферических координатах, на основании задания 1. Сравнить с предыдущими результатами.

3. Задана прямолинейная, косоугольная система координат, угол между двумя координатными линиями в точке равен , третья координатная линия перпендикулярна первым двум. Определить величины и направления базисных векторов и .

4. Записать формулы преобразования сферической системы координат в цилиндрическую и найти якобиан преобразования.

5. Показать, что частные производные произвольной функции преобразуются при переходе к новой системе координат как ковариантные величины.

6. Вывести формулу преобразования при переходе от к .

 








Дата добавления: 2015-10-01; просмотров: 862. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия