Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Повышение точности и вычисление вероятной ошибки при многократных измерениях





 

Выше уже говорилось о том, что при проведении многократных изме­рений заданной величины при одних и тех же параметрах случайные ошибки проявляются в разбросе получаемых данных.

Если проведено несколько измерений искомой величины, то вполне
естественно, что наиболее достоверным результатом является средне­-
арифметическая величина из всех измерений. Используя в качестве
окончательного результата это среднеарифметическое значение, можно
в значительной мере снизить влияние случайных ошибок при измерениях.
Естественно, что чем больше произведено измерений, тем с большей
уверенностью исключаются случайные ошибки, и в пределе при бесконечно
большом числе измерений окончательный результат будет содержать
лишь систематическую ошибку.

Абсолютная случайная ошибка при нескольких измерениях величины
вычисляется по формуле

 

. (65)

 

 

В этой формуле n – число измерений, wcp – среднеарифмети­ческое значение из всех полученных величин w:

 

wcp=Σw/n. (66)

 

Ошибка, вычисляемая по (65), называется квадратичной. Из самого вида (52) ясно, что при n → ∞; ошибка Δwкв → 0.

Однако функция (52) такова, что увеличение количества измере­ний с 2 до 5 сильно снижает эту ошибку; с 5 до 10 – несколько меньше, а увеличение количества измерений, например с 20 до 30, уже очень мало меняет величину этой ошибки.

Заметим, что для вычисления рассматриваемой ошибки необходимо иметь полученные в результате эксперимента величины w, что не всегда требовалось для оценки ошибки отдельного измерения.

 

Таблица 7.1

 

Обозначения Расчетная формула искомой величины Формула для определения максимально возможной относительной ошибки
а w = A · x · y · z δw = δx + δy + δz
б   w = A · xα · yβ · zγ δw = αδx + βδy + γ δz
в δw = αδx + βδy + γ δz + lδυ
г δw = δx + δy + δz + δυ
д w = x ± y ± z
е w = Ax ± By ± C z
ж  
з
и w = A ± Bx
к w = A lnx
л w = A eαx δw = α x δx

 


Библиографический список

 

1. Теплотехника: Учебник для вузов / В.Н. Луканин, М.Г. Шатров и др.; Под ред. В.Н. Луканина. – М.: Высш. шк., 1999 – 671 с.

2. Кудинов В.А., Карташев Э.М. Техническая термодинамика: Учеб. пособие для вузов – М.: Высш. шк., 2000 – 261 с.

3. Стародубцев В.А. Техническая термодинамика: Учеб. пособие: Омск, ОмГТУ, 1999 – 126 с.

4. Рабинович О.М. Сборник задач по технической термодинамике. М., Машиностроение, 1973 – 344 с.

5. Техническая термодинамика: Учеб. для вузов / В.А. Кириллин, В.В. Сычев, А.Е. Шейдлин. 4–е изд. перераб. – М.: Энергоатомиздат, 1983–416 с.

6. Техническая термодинамика: Учеб. для машиностроит. спец. вузов / В.И. Крутов, С.И. Исаев и др.; Под ред. В.И. Крутова – 3–е изд. перераб. и доп. – М.: Высш. шк., 1991 – 384 с.








Дата добавления: 2015-10-01; просмотров: 411. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия