Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Многоугольник.





Многоугольник.

Ломаная линия называется простой, если у нее нет самопересечений (рисунок 1а). Ломаная, имеющая хотя бы одно самопересечение, называется сложной (рисунок 1б).

Многоугольником называется плоская фигура, ограниченная простой замкнутой ломаной линией (рисунок 2а). При этом звенья ломаной служат сторонами многоугольника, а вершины ломаной – вершинами многоугольника. Ясно, что число вершин (и сторон) многоугольника может быть равно любому натуральному числу, не меньшему трех. Многоугольник с n вершинами принято называть n -угольником (при n =3 имеем треугольник, при n =4 – четырехугольник, при n =5 – пятиугольник, …, при n =50 –пятидесятиугольник, и т.д.).

Многоугольник называется выпуклым, если он лежит по одну сторону от каждой прямой, содержащей его сторону. В противном случае многоугольник называется невыпуклым или вогнутым. К примеру, многоугольник, изображенный на рисунке 2б, является вогнутым, поскольку прямая, содержащая его сторону A 3 A 4, разбивает многоугольник на части. Многоугольник, изображенный на рисунке 2а, является выпуклым, поскольку при проведении прямой через любую его сторону многоугольник оказывается лежащим по одну сторону от этой прямой (на рисунке 2а изображены лишь некоторые из таких прямых – A 4 A 5, An -2 An -1 и A 1 An).

Две стороны многоугольника, имеющие общую вершину, называются смежными (например, стороны A 2 A 3 и A 3 A 4). Две вершины многоугольника, принадлежащие одной его стороне, называются соседними (например, A 3 и A 4). Отрезок, соединяющие любые две несоседние вершины многоугольника, называется диагональю многоугольника. На рисунках 2а и 2б пунктиром выделены некоторые диагонали многоугольников. Обратите внимание на то, что в невыпуклом многоугольнике некоторые диагонали могут лежать за его пределами (как, например, диагональ A 3 A 5 на рисунке 2б).

 

Найдем число диагоналей n -угольника:

1. Из каждой вершины n -угольника можно провести n -3 диагонали: нельзя провести диагональ из вершины в ту же вершину и в две соседние.

2. Поскольку число вершин n -угольника равно n, а из каждой вершины можно провести n -3 диагонали, получается, что общее количество диагоналей многоугольника равно n ×(n -3). Но при таком подходе каждая диагональ была учтена дважды: к примеру, диагональ A 2 A 4 была учтена и как диагональ, проведенная из вершины A 2, и как диагональ, проведенная из вершины A 4. Таким образом, общее число диагоналей n-угольника равно .

 

Рассчитаем сумму всех внутренних углов выпуклого n -угольника:

1. Выберем внутри n -угольника A 1 A 2 A 3An -1 An произвольную точку O и соединим ее со всеми вершинами многоугольника (рисунок 3). В результате такого построения образуется n треугольников.

2. Для нахождения суммы всех внутренних углов выпуклого n -угольника необходимо просуммировать все углы треугольников, противолежащие вершине O. Для этого достаточно из суммы всех углов треугольников вычесть углы при вершине O.

3. По теореме о сумме углов треугольника сумма внутренних углов каждого треугольника равна 180°; следовательно, сумма всех внутренних углов n треугольников равна 180°× n. Сумма углов треугольников при вершине O равна 360° (рисунок 3), а значит, сумма всех внутренних углов выпуклого n -угольника равна .

Итак, сумма внутренних углов выпуклого n-угольника равна 180°×(n-2).

Найдем сумму внешних углов выпуклого n -угольника, взятых по одному при каждой вершине (рисунок 4):

1. Каждый внешний угол выпуклого многоугольника смежен с соответствующим внутренним углом, поэтому сумма всех его внутренних и внешних углов равна сумме n пар смежных углов, то есть 180°× n. Таким образом, .

2. Поскольку сумма всех внутренних углов выпуклого n -угольника равна , сумма его внешних углов, взятых по одному при каждой вершине, равна .

Итак, сумма внешних углов выпуклого n-угольника, взятых по одному при каждой вершине, равна 360°. Поскольку при каждой вершине выпуклого многоугольника можно построить по два равных друг другу внешних угла (рисунок 5), сумма всех внешних углов выпуклого многоугольника равна 720°.

Замечание: Сумма внешних углов выпуклого многоугольника, в отличие от суммы его внутренних углов, не зависит от числа сторон n, и легче запомнить выражение именно для суммы внешних углов.

 







Дата добавления: 2015-10-01; просмотров: 1595. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия