Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нелінійність математичних моделей





У низці випадків у науковій та навчальній літературі для спрощення обмежуються здебільшого лінійними моделями, хоча в наш час бурхливо розвивається науковий підхід — «синергетична економіка», — який спирається на суттєву нелінійність еконо-
мічних процесів, досліджує час і зміни в нелінійній економічній теорії[2].

У математичному аспекті важливим є поняття лінійності, котре означає, що справедливим є принцип суперпозиції, тобто, що будь-яка лінійна композиція розв’язків (наприклад сума їх) є також розв’язком задачі. Використовуючи принцип суперпозиції, неважко, відшукавши рішення в будь-якому частковому випадку, побудувати рішення для більш загальної ситуації. Тому про якісні властивості загального випадку можна судити виходячи з властивостей часткового — різниця між двома розв’язками має лише кількісний характер. Отже, у випадку лінійних моделей відгук (реакція) об’єкта на зміну умов є пропорційним величині цих змін.

Для нелінійних явищ, математичні моделі котрих не підпорядковуються принципу суперпозиції, знання стосовно до поведінки частини об’єкта ще не гарантують знань про поведінку об’єкта в цілому, а його відгук на зміну умов може якісно залежати від кількісної величини (обсягів) цих змін.

Наголосимо, що більшість реальних процесів і відповідних (адекватних) їм математичних моделей є нелінійними. Лінійні ж моделі відповідають досить частковим випадкам і, як правило, послуговують лише як перше наближення до реальності. Наприклад, моделі популяцій відразу ж стають нелінійними, якщо зважувати на те (взяти гіпотезу), що обмеженість доступних популяції ресурсів необхідно обов’язково враховувати. Будуючи такі моделі, вважають, що:

1) існує «рівноважна» чисельність популяції Np, котру може забезпечити навколишнє середовище (з погляду сьогодення);

2) швидкість зміни чисельності популяції пропорційна цій чисельності, помноженій (на відміну від моделі Мальтуса) на величину відхилення її від рівноважного значення чисельності, тобто:

(2.2)

Співмножник у цьому рівнянні забезпечує механізм «насичення» чисельності — за N < Np (N > Np) швидкість зростання додатна (від’ємна) і прямує до нуля, якщо N ® Np.

Подамо рівняння (2.2) у вигляді:

Інтегруючи це рівняння, отримаємо:

Постійну інтегрування C можна отримати з умови N (t = 0) =
= N (0), тобто

Отже, маємо:

або

Поведінка функції N (t) описується так званою логістичною кривою N (t) (рис. 2.2).

Рис. 2.2. Логістичні криві, що відповідають різним
значенням початкової чисельності N (0)

За будь-якого N (0) чисельність прямує до рівноважного значення Np і, що характерно, тим повільніше, чим ближче N (t) до N (0). Отже, рівновага, на відміну від моделі (2.1), у даному випадку є стійкою. Зазначимо, що логістична модель більш реалістично відображає динаміку популяції порівняно з моделлю Мальтуса, але сама вона в разі необхідності стає нелінійною й тому більш складною. Наголосимо, що припущення щодо механізмів насичення використовуються у формуванні низки моделей різних економічних об’єктів і процесів як на мікро-, так і на макроекономічному рівнях.







Дата добавления: 2015-10-01; просмотров: 601. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия