Студопедия — Токи через потенциалзависимые мембранные каналы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Токи через потенциалзависимые мембранные каналы






Локальная фиксация потенциала мембраны. До

сих пор мы рассматривали токи и сдвиги проводимости всей мембраны при ее деполяризации. Несколько лет назад был разработан метод регистрации токов в микроучастках мембраны диаметром примерно 1 мкм, который позволяет идентифицировать молекулярные реакции одиночных каналов на основе зависимостей ионных токов от потенциала и времени. Рис. 2.11 иллюстрирует принцип локальной фиксации потенциала ("patch clamp") [12, 24]. Стеклянная микропипетка, диаметр кончика которой меньше 1 мкм, подводится к клетке вплоть до контакта с мембраной, и когда через пипетку подается отрицательное давление, пипетка обычно закупоривается участком мембраны; электрическое сопротивление между пипеткой и внеклеточным раствором возрастает скачком более чем до 1 ГОм (109 Ом). В результате микроучасток мембраны электрически изолируется от остальной мембраны. Канал пипетки соединен с усилителем обратной связи, который обеспечивает регулирующую цепь для поддержания потенциала пипетки на заданном уровне. Ток, необходимый для стабилизации потенциала-«ток фиксации»-точно соответствует току,


протекающему в каждый момент через микроучасток мембраны. Командный потенциал усилителя можно устанавливать произвольно, так что регистрация токов через микроучасток мембраны может осуществляться при различных мембранных потенциалах или после ступенчатых сдвигов потенциала.

Гигаомный контакт между пипеткой и мембраной настолько прочен, что после отведения пипетки микроучасток мембраны часто отрывается от клетки, оставаясь прикрепленным к кончику пипетки. В этом случае регистрацию можно производить в микроучастке мембраны, отделенном от клетки, причем цитоплазматическая поверхность этого участка может омываться любым нужным раствором. Путем искусных манипуляций микроучасток мембраны можно даже перевернуть на пипетке наружной стороной мембраны наружу. Тогда цитоплазматическую поверхность можно орошать раствором в пипетке, который должен примерно соответствовать внутриклеточной среде, а на наружную поверхность могут воздействовать растворы различного состава; такая конфигурация «наружной стороной наружу» („outside-out") очень полезна для тестирования реакций каналов мембраны на изменения состава внеклеточной среды, на медиаторы или на фармакологические средства внеклеточного действия. Достаточно прочный контакт между участком мембраны и кончиком пипетки может быть достигнут только при абсолютной чистоте стекла пипетки и мембраны. Образованию контакта могут мешать волокна соединительной ткани, которые обычно приходится удалять путем обработки мембраны такими ферментами, как коллагеназа [12].


36 ЧАСТЬ I ОБЩАЯ ФИЗИОЛОГИЯ КЛЕТКИ


Рис. 2.11. Схема локальной фиксации мембранного потенциала («пэтч-кламп»). Изображен продольный срез через регистрирующую микропипетку (обозначена черным цветом) с диаметром контактирующего с мембраной кончика ~1 мкм. Если кончик электрода абсолютно чист и поверхность клетки освобождена от волокон соединительной ткани, то при подаче через пипетку отрицательного давления образуется тесный контакт, который создает электрическую изоляцию каналов находящегося в кончике пипетки микроучастка мембраны от остальной мембраны клетки (вставка). Таким способом можно регистрировать токи каналов с помощью усипителя обратной связи, соединенного с раствором электролита в пипетке (по [12, 24] с изменениями)

Токи через одиночные Na+-каналы. Токи через микроучасток мембраны, процедура регистрации которых показана на рис. 2.11, схематически представлены на рис. 2.12. Слева приведены 10 записей Na+-тока, при каждой из которых мембрана была деполяризована на период 14 мс. В каждом случае наблюдается только единственный короткий импульс тока с амплитудой —1,6 пА; это ток, протекающий через одиночную белковую молекулу Na+-канала. Длительность импульсов тока, которая соответствует времени открытого состояния канала, значительно варьирует около среднего значения 0,7 мс. Моменты открывания также варьируют, но при суммировании многих одиночных отведений получается результирующий временной ход тока, который на рис. 2.12 вверху слева изображен под записью скачка потенциала. Судя по записи временного хода тока, вероятность открывания канала резко возрастает при деполяризации, достигает максимума через 1,5 мс, затем снижается и становится минимальной через 10 мс после скачка деполяризации. Такое уменьшение вероятности открывания канала после деполяризации соответствует инактивации суммарного Na+-TOKa [8, 31].


Отсюда следует, что открывание Na+-каналов при деполяризации не является строго детерминированным процессом; скорее происходит повышение вероятности открывания канала, а после того как он открылся, существует определенная вероятность, что он снова закроется. Таким «стохастическим» поведением обладают химические реакции, так что различные состояния канала - «закрытое, но способное к активации», «открытое» и «закрытое инактивированное» (неспособное к активации) можно связать между собой посредством постоянных скорости, как и в случае химических реакций. Простейшая модель поведения Na+-канала включает эти три состояния (рис. 2.13). Переход от закрытого и способного к активации в открытое состояние обеспечивается деполяризацией. Однако деполяризация ускоряет также и переход в инактивированное состояние, поэтому открытый канал подвергается быстрой инактивации и остается инактивированным, пока в результате ре- или гиперполяризации мембраны не вернется в закрытое, но способное к активации состояние. Равновесие между закрытым, но способным к активации и закрытым инактивированным состояниями тоже устанавливается посредством мембранного потенциала; это соотношение проявляется в виде зависимости от исходного потенциала способности Na+-TOKa к активации (рис. 2.8) [8].

Токи через одиночные К+-каналы. На рис. 2.12 справа схематически представлены токи одиночных К+-каналов, аналогично токам Na+-KaHaлов (см. слева). Импульсы тока тоже имеют маленькую амплитуду (всего лишь +2 пА), а продолжительность открытого состояния канала варьирует вблизи среднего значения 5 мс. Однако в период открытого состояния К+-канал часто на короткое время закрывается, т. е. происходят быстрые осцилляции между открытым и закрытым состояниями. Такие «вспышки» открываний наблюдаются для многих типов каналов (с. 39 и 65). В отличие от Na+-канала, К +-канал не инактивируется во время деполяризации; пока продолжается деполяризация, индивидуальные каналы непрерывно открываются и закрываются. В соответствии с этим, при суммации отведений получается кривая К+-тока, которая нарастает до стационарного уровня. Таким образом, описывая поведение токов К+-каналов с помощью модели, представленной на рис. 2.13, следует отметить, что инактивированное состояние в данном случае отсутствует, но наблюдаются два последовательных закрытых состояния, которые обеспечивают прерывистый характер вспышек [34] (см. Ca2+-канал).

Рис. 2.12 отражает поведение К+-каналов, типичное для нервных волокон: задержанное нарастание суммарного тока при деполяризации, заметное повышение проводимости во время деполяризации от


ГЛАВА 2. ПЕРЕДАЧА ИНФОРМАЦИИ ПОСРЕДСТВОМ ВОЗБУЖДЕНИЯ 37

 

Рис. 2.12. Токи через натриевые (слева) и калиевые (справа) каналы (схематическое изображение). С помощью локальной фиксации потенциала производили сдвиг потенциала длительностью 14 мс от —80 до —40 мВ (черная линия): ниже показаны мембранные токи, зарегистрированные при нескольких таких последовательных сдвигах потенциала. Во время деполяризации токи одиночного канала могут возникать в любой момент, причем длительность их варьирует. При объединении многих записей токов в условиях синхронизации скачков потенциала получаются суммарные кривые токов, показанные вверху красным (lNa и Ικ). Временной ход lNa свидетельствует о том, что вероятность открывания Na+-каналов наиболее высока вскоре после скачка потенциала, а примерно через 1 мс эти каналы открываются все реже и в конце концов инактивируются. Большая часть К+-каналов открывается с некоторой задержкой после скачка потенциала, затем средняя частота открываний остается на постоянном уровне в течение всего периода деполяризации

потенциала покоя и отсутствие инактивации (ср. рис. 2.6). Обнаружено по крайней мере пять других типов К+-каналов. Они различаются, например, соотношением между открыванием канала и потенциалом мембраны, характеристиками инактивации (см. рис. 2.25) или же зависимостью не только от деполяризации, но и от внутриклеточной концентрации Са2+. Эти типы К+-каналов обнаружены в клетках различных типов или частях клетки и присутствуют либо по отдельности, либо в виде определенных сочетаний. Именно разнообразие К+-каналов обусловливает вариации формы потенциалов действия, а также различную скорость реполяризации и особенности следовых потенциалов (см. рис. 2.4). Существует яркий контраст между многообразием К+-каналов и одновременно Na+-каналов, которые в возбудимых клетках животных всех типов быстро активируются деполяризацией, а затем быстро инактивируются.

Токи через одиночные Ca2 + -каналы. До сих пор мы не упоминали о том, что при деполяризации клетки открываются также Ca2+-каналы. При этом


возникает входящий кальциевый ток,который вместе с одновременно развивающимся Na+-током обеспечивает деполяризацию мембраны. Концентрация свободных ионов Са+ в клетке очень низка (табл. 1.1), так что равновесный потенциал для Ca2 + более положителен, чем ENa (гл. 1, уравнение 4, с. 13). В аксонной мембране gCa меньше по сравнению с gNa, поэтому этой величиной можно пренебречь при анализе потенциала действия (рис. 2.7). Однако в дендритах нейронов или в окончаниях аксонов (см. с. 62) во время деполяризации gCa может возрастать, превышая gNa. В миокарде и тем более в гладких мышцах повышение gCa бывает столь же велико, как и повышение gNa, а иногда и более значительно. Такие входящие токи Са2+ представляют особый интерес из-за их влияния на внутриклеточную концентрацию Са2+, [Са2+]i , которая может возрастать с 10−7 до 10−6 М; это повышение [Са2 + ]; часто выполняет в клетке регулирующие функции (см. с. 23 и рис. 1.16). Механизм открывания Ca2+-каналов и последующие внутриклеточные процессы являются филогенетически очень древними - они выявлены даже у простейших.








Дата добавления: 2015-10-01; просмотров: 653. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия