Студопедия — ЧАСТЬ I. ОБЩАЯ ФИЗИОЛОГИЯ КЛЕТКИ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЧАСТЬ I. ОБЩАЯ ФИЗИОЛОГИЯ КЛЕТКИ







Рис. 2.13.Модель состояний Na+-каналов. «Закрытое, способное к активации» состояние при деполяризации может преобразовываться в «открытое активированное» или «закрытое инактивированное» состояние. Когда канап находится в «открытом активированном» состоянии, стойкая деполяризация способствует переходу в «закрытое инактивированное» состояние. Возвращение канала в «закрытое, способное к активации» состояние может происходить только в результате реполяризации. (Более реальная модель включает последовательно 3 «закрытых, способных к активации» и 4 «закрытых инактивированных» состояния [8].)

Токи одиночных Ca2 +-каналов в миокарде (рис. 2.14) характеризуются несколько более сложным поведением по сравнению с Na+- и К+-токами, показанными на рис. 2.12. Во время серий деполяризационных скачков потенциала примерно в 70% случаев возникают довольно длительные вспышки импульсов тока, каждый амплитудой около 1 пА, а в 30% случаев канал остается закрытым. Индивидуальные открывания во время вспышек продолжаются в среднем около 1 мс, а закрытые состояния между ними - только 0,2 мс. Суммарный Ca2+-ток во время деполяризации (нижние записи на рис. 2.14) быстро нарастает и инактивируется с постоянной времени примерно 130 мс, причем общий ток определяется длительностью и частотой вспышек. Кинетику канала проще всего описать (в соответствии с рис. 2.13) следующим уравнением:

Закрытое состояние 1 Закрытое состояние 2

Открытое состояние (2)

Здесь от переходов между «Закрытым состоянием 2» и «Открытым состоянием» зависит длительность и частота индивидуальных открываний, а от переходов между «Закрытым состоянием 1» и «Закры-


 

Рис. 2.14. А. Б. Токи одиночных кальциевых каналов в клетках миокарда. Вверху, деполяризация длительностью 600 мс от —70 до +10 мВ, создаваемая методом локальной фиксации потенциала. Ниже представлены 4 записи токов одиночного канала. А. В нормальных условиях деполяризация в 30% случаев не вызывает токов через канал (записи не представлены). Внизу: суммарный ток, полученный путем усреднения многих индивидуальных записей токов одиночного канала: видна инактивация Ca2 +-тока после деполяризации. Б. В присутствии 1 мкМ адреналина группы открываний одиночного канала становятся продолжительнее; при этом деполяризация не вызывает открываний канала только в 20%. Адреналин не влияет на амплитуду токов одиночного канала, но амплитуда суммарного тока (внизу) значительно возрастает (по [32] с изменениями)

ГЛАВА 2. ПЕРЕДАЧА ИНФОРМАЦИИ ПОСРЕДСТВОМ ВОЗБУЖДЕНИЯ 39


тым состоянием 2»-частота и длительность вспышек. Уравнение (2) требует дополнения, чтобы учесть инактивированное состояние, как показано на рис. 2.13 [32].

Записи активности Ca2 +-канала на рис. 2.14 служат также примером модуляции активности канала гормоном или медиатором (см. с. 65). Адреналин,секретируемый корой надпочечников как «эрготропный гормон», поступает к сердцу с кровотоком; один из его эффектов состоит в увеличении частоты сердечных сокращений. Кроме того, он высвобождается (вместе с норадреналином) в качестве медиатора из симпатических нервов сердца, вызывая тот же эффект (с. 462). В эксперименте, результаты которого приведены на рис. 2.14, Б, адреналин в концентрации 10 −6Μ апплицировали на клетку миокарда. После этого деполяризация вызвала примерно в 80% случаев активность одиночных Ca2+-каналов с повышенной частотой вспышек. Кратковременные открывания и закрывания каналов были такими же, как раньше. Суммарная кривая (рис. 2.14, Б. внизу) отчетливо показывает, что адреналин увеличивал вход Са2 +. Такой же эффект можно вызвать перфузией клеток миокарда раствором с циклическим аденозинмонофосфатом (цАМФ) или применением каталитической субъединицы цАМФзависимой протеинкиназы (ПК-Α). Эти наблюдения свидетельствуют, что адреналин действует здесь через второй посредник -цАМФ, вызывая фосфорилирование ферментов каталитической субъединицей протеинкиназы (рис. 1.15, с. 24) [19]. Таким образом, адреналин, по-видимому, увеличивает Ca2+-ток путем инициации фосфорилирования Ca2 +-канала, которое способствует переходу из «Закрытого состояния 1» в «Закрытое состояние 2». Эффект адреналина, представленный на рис. 2.14, может служить прототипом модуляции клеточной активности гормонами или медиаторами.

В мембране, несомненно, существуют еще и Cl -каналы. Они изучены недостаточно подробно, поэтому рассматриваться здесь не будут.

Молекулы Na+-канала. Белки различных каналов очень сходны между собой по структуре и функциям; полагают, что все они происходят от Са2+канала. Поскольку наиболее тщательно исследована молекула Na+-канала, мы вновь обратимся к нему. Na+-канал состоит из гликопротеина с молекулярной массой ~ 300 000. Недавно установлена его аминокислотная последовательность. Изолированные молекулы можно включить в искусственные липидные мембраны, где они продолжают функционировать [8]. Число имеющихся в мембране Na+каналов можно определить путем «титрования» тетродотоксином, который связывается с этими каналами, или путем деления величины Na+-тока через мембрану площадью 1 мкм2 на амплитуду тока


одного канала. Разные типы мембран содержат от 1 до 50 каналов на 1 мкм2. При плотности 50 каналов· мкм−2 среднее расстояние между ними составляет около 140 нм. Если принять диаметр молекулы канала равным примерно 8 нм, а диаметр просвета канала, когда он открыт,- около 0,5 нм, то оказывается, что каналы находятся друг от друга довольно далеко.

В течение 1 мс открытого состояния через один такой канал входит примерно 1 пА тока, перенося заряд, равный 10−15 Кл. Емкость мембраны обычно равна 1 мкФ см−2 или 10−14 Ф мкм−2. Поскольку 1Ф = 1 Кл-В−1, заряд величиной 10−15 Кл мкм−2. который входит в клетку за время одного открывания каналов, достаточен для смещения мембранного потенциала на 100 мВ; иными словами, такой заряд обеспечивает фазу нарастания потенциала действия. Заряд величиной 10−15 Кл переносит 6000 ионов Na +. Повышение внутриклеточной концентрации, обусловленное поступлением 6000 ионов Na+ в примембранную область объемом 1 мкм3, пренебрежимо мало, 10−5 М. Следовательно, токи каналов достаточно велики для обеспечения генерации потенциала действия, но не создают заметных изменений внутриклеточных концентраций ионов (за исключением [Ca2+]i). Таким образом, восстановление трансмембранных ионных градиентов посредством Na/К-насоса (с. 15) не играет роли в случае одиночного потенциала действия.

Белок Na+-канала должен быть способен не только быстро включать массивный поток Na+, но и предотвращать одновременный вход других ионов, особенно К+, которые имеют почти те же размеры. Значит, Na+ -каналы должны характеризоваться избирательностью. Что касается анионов, то они удерживаются отрицательными зарядами у входа в канал, как это показано на схеме (рис. 2.15). Из мелких катионов Li + проходит через Na+-канал относительно хорошо, тогда как К+ практически не пропускается. Избирательность можно объяснить только специфическим связыванием иона во время его прохождения через канал, о чем уже говорилось при обсуждении энергетического уровня связывания вдоль канала (рис. 1.5, Б) [21].

Кроме избирательности для Na+, Na+-канал должен обладать способностью быстро изменять свою проницаемость при изменениях мембранного потенциала. Следовательно, молекула Na+-канала должна нести заряды, которые могут смещаться под влиянием сдвигов силы электрического поля через мембрану. Смещения этих зарядов регистрируются в виде «воротных токов» [3, 9, 23] после полной блокады ионных каналов; воротные токи свидетельствуют о смещении по крайней мере 4 зарядов на канал. Эти 4 заряда представлены на рис. 2.15 как «датчик электрического поля», способствующий изменению конформации молекулы, при котором ка-


40 ЧАСТЬ I. ОБЩАЯ ФИЗИОЛОГИЯ КЛЕТКИ


нал открывается. Открытое состояние нестабильно и преобразуется спонтанно в закрытое инактивированное состояние. Инактивация осуществляется участками канального белка, находящимися на внутренней стороне мембраны. Вещества, которые действуют внутриклеточно, например иодат или проназа, а также специфические токсины и фармакологические препараты, могут блокировать инактивацию.

Еще один способ блокады Na+-канала представляет интерес для медицины. Местные анестетики используются для предотвращения генерирования и распространения возбуждения в нервах, с тем чтобы потенциалы действия от «болевых рецепторов» не поступали в ЦНС. Анестетики обычно вводят около того нерва, который нужно блокировать. Однако их молекулы связываются только с открытыми каналами, в участке между входом в селективную пору и «воротами» (рис. 2.15) [25. 30]. Молекулы местных анестетиков слишком велики, чтобы войти в устье канала с наружной стороны мембраны. Они могут входить в открытый канал только с внутренней стороны мембраны или же, если они жирорастворимы, через липидную мембрану. Вызываемые ими закрывания канала часто продолжаются только несколько миллисекунд, но повторяются с высокой частотой; разбивая ток одиночного канала на много коротких фрагментов, анестетики делают вход Na+ неэффективным.







Дата добавления: 2015-10-01; просмотров: 548. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2024 год . (0.015 сек.) русская версия | украинская версия