Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

При асимметричном цикле напряжений





 

Для расчетов при асимметричном цикле напряжений принимают упрощенную диаграмму CML предельных напряжений образца (см. рис. 11.6 и 11.15) Учитывая концентрацию напряжений, влияние абсолютных размеров поперечного сечения детали, состояние поверхности, строят диаграмму предельных напряжений детали. При этом в соответствии с данными опытов влияние перечисленных факторов относят только к переменной составляющей цикла, т. е. к амплитуде . Предельная амплитуда напряжений для образца согласно формуле (11.5),

 

(11.18)

 

Предельная амплитуда напряжений для детали согласно сказанному выше равна

 

(11.19)

 

Уравнение линии предельных напряжений EN (рис. 11.15) для детали получит вид

 

(11.20)

 

Здесь штрихами обозначены текущие координаты.

Вычислим теперь коэффициент запаса прочности детали при действии переменных напряжений и , (точка R диаграммы, рис. 11.15).

Предположим, что при увеличении нагрузки на деталь отношение Такое нагружение называется простым.

 


Рис. 11.15.

 

В этом случае предельной точкой, соответствующей разрушению, является точка S.

Коэффициент запаса прочности равен отношению отрезков SS ' и RR ':

(11.21)

 

Величину ( Rk)d (ординату точки S) найдем в результате совместного решения уравнений линии EN и линии OS. Уравнение линии OS имеет вид

(11.22)

 

(штрихами обозначены текущие координаты).

Приравняв правые части формул (11.20) и (11.22), получим

 

(11.23)

 

откуда

(11.24)

 

Подставив значение в формулу (11.20) или (11.22), найдем ординату точки S.

Величину ( Rk)d (ординату точки S) найдем в результате совместного решения уравнений линии EN и линии OS. Уравнение линии OS имеет вид

 

(11.25)

 

Следовательно, на основании формулы (11.21) получается следующая окончательная зависимость для определения коэффициента запаса прочности:

 

(11.26)

 

Аналогично, при кручении

(11.27)

 

При сложном напряженном состоянии, возникающем, например, при кручении с изгибом, коэффициент запаса прочности вычисляют по формуле:

(11.28)

 

а значения , и - по формулам (11.26) и (11.29).

Кроме коэффициента запаса прочности по сопротивлению усталости необходимо вычислять коэффициент запаса по сопротивлению пластическим деформациям, так как точка s может оказаться выше линии ML. Коэффициент запаса прочности по сопротивлению пластическим деформациям вычисляется по формулам

 

(11.29)

 

 

(11.30)

 

Расчетным (действительным) является меньший из коэффициентов запаса, вычисляемых по формуле (11.26) или (11.29) либо при кручении соответственно по формуле (11.27) или (11.30). В случае расчета на изгиб с кручением в формулу для определения общего коэффициента запаса прочности следует подставлять меньшие из значений nσ, и nt, вычисляемые, как указано выше.

 







Дата добавления: 2015-10-02; просмотров: 359. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия