Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 4. Спектральное разложение.





Не вдаваясь в математические детали, отметим одно важное обстоятельство: любой физически реализуемый периодический процесс может быть представлен в виде суммы гармонических колебаний (быть может в виде бесконечной суммы – интеграла):

 

Сумма, которой можно заменить периодический процесс , называется радом Фурье. Специальный раздел математики – Фурье-анализ - занимается математической стороной проблем, связанных с возможность представления функции в виде ряда. Отметим одно важное свойство такого представления – его единственность. Существует единственный набор необходимых частот единственный набор отвечающих этим частотам амплитуд и начальных фаз , обеспечивающих представление функции в виде суперпозиции гармонических функций.

Указанное свойство периодической функции (периодического процесса) делает целесообразным во многих физических задачах использовать гармонические колебания.

Рассмотрим пример амплитудно-модулированного колебания , где амплитуда меняется по закону . Константа ≤ 1 называется глубиной модуляции.

Для разложения этой функции в ряд Фурье не обязательно пользоваться формулами разложения в ряд, можно использовать простейшие тригонометрические преобразования:

 

 

Итак, амплитудно-модулированное колебание представляется в виде суммы трех гармонических функций (трех гармоник):

 

с частотами , , и амплитудами , и . Колебание называется несущим колебанием, а и - боковыми гармониками. Полученный результат удобно изобразить графически, откладывая по оси абсцисс частоты слагаемых гармонических колебаний, по оси ординат – соответствующие этим частотам амплитуды колебаний.

 

Примеры решения задач «Сложение колебаний»







Дата добавления: 2015-10-02; просмотров: 332. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия