Вопрос 4. Спектральное разложение.
Не вдаваясь в математические детали, отметим одно важное обстоятельство: любой физически реализуемый периодический процесс может быть представлен в виде суммы гармонических колебаний (быть может в виде бесконечной суммы – интеграла):
Сумма, которой можно заменить периодический процесс , называется радом Фурье. Специальный раздел математики – Фурье-анализ - занимается математической стороной проблем, связанных с возможность представления функции в виде ряда. Отметим одно важное свойство такого представления – его единственность. Существует единственный набор необходимых частот единственный набор отвечающих этим частотам амплитуд и начальных фаз , обеспечивающих представление функции в виде суперпозиции гармонических функций. Указанное свойство периодической функции (периодического процесса) делает целесообразным во многих физических задачах использовать гармонические колебания. Рассмотрим пример амплитудно-модулированного колебания , где амплитуда меняется по закону . Константа ≤ 1 называется глубиной модуляции. Для разложения этой функции в ряд Фурье не обязательно пользоваться формулами разложения в ряд, можно использовать простейшие тригонометрические преобразования:
Итак, амплитудно-модулированное колебание представляется в виде суммы трех гармонических функций (трех гармоник):
с частотами , , и амплитудами , и . Колебание называется несущим колебанием, а и - боковыми гармониками. Полученный результат удобно изобразить графически, откладывая по оси абсцисс частоты слагаемых гармонических колебаний, по оси ординат – соответствующие этим частотам амплитуды колебаний.
Примеры решения задач «Сложение колебаний»
|