Студопедия — Уравнение на собственное значение. Собственная функция и собственное значение оператора физической величины. Спектр собственного значения.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение на собственное значение. Собственная функция и собственное значение оператора физической величины. Спектр собственного значения.






Отметим, если мы произведем единичные измерения физической величины L, то её дисперсия по определению равна нулю (), поскольку .

Тогда из предыдущего параграфа следует, что

– этот оператор уравнения называется уравнением на собственное значение. В квантовой механике, в подавляющем большинстве случаев, в качестве оператора выступает какой-либо дифференциальный оператор первого или второго порядка. Например: .

Решение этого оператора уравнения, обязательно удовлетворяющее свойствам конечности, например: однозначность волновой функции 𝛙. …. этим требованиям, как правило, приводим к тому, что решим, возможно, не при любых произвольных значениях физической величины L, а лишь при избранных: . Такие значения называют собственными значениями . Ряд собственного значения часто называют спектром. Он может быть дискретным, может быть непрерывным, может состоять из определения полос. Например: энергия электрона L=E – энергетический спектр. Отметим, что каждому собственную функцию, которая в итоге образует спектр собственной функции .

В квантовой механике постулируется, что идеальный прибор измерения физической величины L, не может показывать иных значений, кроме собственных значений этой величины.


 







Дата добавления: 2015-10-02; просмотров: 347. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия