Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение на собственное значение. Собственная функция и собственное значение оператора физической величины. Спектр собственного значения.





Отметим, если мы произведем единичные измерения физической величины L, то её дисперсия по определению равна нулю (), поскольку .

Тогда из предыдущего параграфа следует, что

– этот оператор уравнения называется уравнением на собственное значение. В квантовой механике, в подавляющем большинстве случаев, в качестве оператора выступает какой-либо дифференциальный оператор первого или второго порядка. Например: .

Решение этого оператора уравнения, обязательно удовлетворяющее свойствам конечности, например: однозначность волновой функции 𝛙. …. этим требованиям, как правило, приводим к тому, что решим, возможно, не при любых произвольных значениях физической величины L, а лишь при избранных: . Такие значения называют собственными значениями . Ряд собственного значения часто называют спектром. Он может быть дискретным, может быть непрерывным, может состоять из определения полос. Например: энергия электрона L=E – энергетический спектр. Отметим, что каждому собственную функцию, которая в итоге образует спектр собственной функции .

В квантовой механике постулируется, что идеальный прибор измерения физической величины L, не может показывать иных значений, кроме собственных значений этой величины.


 







Дата добавления: 2015-10-02; просмотров: 380. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия