Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

I. Учет случайных составляющих неопределенности (погрешности)





Случайные составляющие погрешности (неопределенности) измерений вызываются рядом мелких, неконтролируемых обстоятельств. Они подчиняются законам математической статистики.

При оценке таких неопределенностей предполагают, что они являются случайными величинами, малыми по сравнению с самой измеряемой величиной и распределены по нормальному (гауссову) закону. Для оценки неопределенности измерений, которую вносят случайные составляющие, необходимо выполнить следующее:

1. Провести n измерений величины х. Результаты измерений х 1, х 2, , хn занести в таблицу по форме 1. Измерения должны быть многократными (число измерений n указывается преподавателем).

2. На основе полученных значений х 1, х 2, , хn вычислить среднее арифметическое значение х по формуле

(1)

3. Вычислить отклонения результатов отдельных измерений (хi) от среднего арифметического значения (х ср –хi), а затем рассчитать квадратичное отклонение (х ср – хi)2. Полученные данные занести в таблицу по форме 1.

Форма 1

N опыта хi (х ср – хi) (х ср – хi)2
       

 

4. По данным последней колонки формы 1 определить среднее квадратичное отклонение (СКО) результата серии из n измерений от среднего арифметического значения х ср. по формуле:

(2)

Замечание: В международных документах, основанных на «Руководстве по выражению неопределенности измерений» среднее квадратичное отклонение (СКО) обозначается термином стандартная неопределенность (Uс)

5. Оценить доверительный интервал, т.е. интервал, в котором с требуемой доверительной вероятностью р находится измеряемая величина х. Значение р задается преподавателем исходя из требований конкретного эксперимента.

Границы доверительного интервала для измеряемой величины х определяются по формуле:

х ср± D х, где (3)

Здесь t (p,n) – коэффициент Стьюдента, зависящий от р и n.

Определить коэффициент Стьюдента при выбранной доверительной вероятности р и данном числе измерений n можно из таблицы 1.

6. Записать результат прямого измерения в виде:

(х ср D х) … (х ср + D х).

Такая запись означает, что измеренная величина х с доверительной вероятностью р находится в интервале от (х ср D х) до (х ср + D х).

Например, если при измерении диаметра d шарика микрометром среднее арифметическое значение d ср. = 5,29 мм расчетное значение границы доверительного интервала составляет D d = 0,01 мм, то ответ имеет вид: d = (5,28…5,30) мм.

Следует заметить, что для всех измеряемых в данной лабораторной работе величин задается одно и то же значение доверительной вероятности р.

Таблица 1

p n 0.7 0.8 0.9 0.95 0.98 0.99 0.999
  1.3 1.9 6.31 12.71 31.82 63.66 636.62
  1.3 1.6 2.92 4.30 6.69 9.92 31.60
  1.2 1.5 2.35 3.18 4.54 5.84 12.94
  1.2 1.5 2.13 2.78 3.75 4.60 8.61
  1.1 1.4 2.02 2.57 3.36 4.03 6.86
  1.1 1.4 1.94 2.45 3.14 3.71 5.96
  1.1 1.4 1.90 2.36 3.00 3.50 5.40
  1.1 1.4 1.86 2.31 2.90 3.36 5.04
  1.1 1.3 1.83 2.26 2.82 3.25 4.78
  1.1 1.3 1.7 2.0   2.7  
  1.0 1.3 1.7 2.0   2.6  
¥ 1.0   1.6 2.0   2.6  






Дата добавления: 2015-10-02; просмотров: 345. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия