Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Глава 6. Методы исследования энергообмена





Прямая калориметрия. Прямая калориметрия основана на непосредственном учете в биокалориметрах количества тепла, выделенного организмом. Био­калориметр представляет собой герметизированную и хорошо теплоизолированную от внешней среды камеру. В камере по трубкам циркулирует вода. Тепло, выделяемое находящимся в камере че­ловеком или животным, нагревает циркулирующую воду.

Рис.1. Биокалориметр Этуотера - Бенедикта (схема). Объяснение в тексте.

 

По количеству протекающей воды и изменению ее температуры рассчиты­вают количество выделенного организмом тепла.

Одновременно в биокалориметр подается О2 и поглощается избыток СO2 и водяных паров. Схема биокалориметра приведена на рис.1. Продуцируемое организмом человека тепло измеряют с помощью термометров (1,2) по нагреванию воды, протекающей по трубкам в камере. Количество протекающей воды измеряют в баке (3). Через окно (4) подают пищу и удаляют экскременты. С помощью насоса (5) воздух извлекают из камеры и прогоняют через баки с серной кислотой (6 и 8) - для поглощения воды и с натронной известью (7) - для поглощения СО2. O2 подают в ка­меру из баллона (10) через газовые часы (11). Давление воздуха в камере поддерживают на постоянном уровне с помощью сосуда с резиновой мембраной (9).

Непрямая калориметрия. Методы прямой калориметрии очень громоздки и сложны. Учи­тывая, что в основе теплообразования в организме лежат окис­лительные процессы, при которых потребляется O2 и образуется СO2, можно использовать косвенное, непрямое, определение теп­лообразования в организме по его газообмену - учёту количества потреблённого кислорода и выделенного

углекислого газа с последующим расчётом теплопродукции организма.

Для длительных исследований газообмена используют спе­циальные респираторные камеры (закрытые способы непрямой калориметрии) (рис.2). Кратковременное определение газооб­мена в условиях лечебных учреждений и производства проводят более простыми некамерными методами (открытые способы кало­риметрии).

Наиболее распространен способ Дугласа - Холдейна, при котором в течение 10-15 минут собирают выдыхаемый воз­дух в мешок из воздухонепроницаемой ткани (мешок Дугласа), укрепляемый на спине обследуемого. Он дышит через загубник, взятый в рот, или резиновую маску, надетую на лицо. В загубнике и маске имеются клапаны, устроенные так, что обсле­дуемый свободно вдыхает атмосферный воздух, а выдыхает воз­дух в мешок Дугласа. Когда мешок наполнен, измеряют объем выдохнутого воздуха, в котором определяют количество О2 и СО2.

Кислород, поглощаемый организмом, используется для окис­ления белков, жиров и углеводов. Окислительный распад 1 г каж­дого из этих веществ требует неодинакового количества О2 и со­провождается освобождением различного количества тепла. Как видно из табл., при потреблении организмом 1 л О2 освобож­дается разное количество тепла в зависимости от того, на окисле­ние каких веществ кислород используется.

 

Рис.2. Респираторный аппарат Шатерникова (схема).

К - камера; Б - баллон с О2; Н - мотор, выкачивающий воздух из камеры; 3 - змеевик для охлаждения воздуха; Щ - сосуд, наполненный раствором щелочи для поглощения СО2; В - баллон для поглощения водяных паров хлоридом кальция; Т - термометры. Слева устройство для автоматической подачи О2 в камеру и поддержания постоянства давления в ней.

 

Таблица 2

Потребление кислорода и высвобождение тепла при окислении различных веществ в организме

Вещество, окисляющееся в организме Количество тепла, освобождающееся при окислении 1 г вещества, кДж (ккал) Количество потребляемого кислорода, л Количество освобождающейся при окислении 1 л кислорода энергии, кДж (ккал)
Белки 17,17 (4,1) 0,966 19,26 (4,60)
Жиры 38,94 (9,3) 2,019 19,64 (4,69)
углеводы 17,17 (4,1) 0,830 21,14 (5,05)

 

 

Количество тепла, освобождающегося после потребления ор­ганизмом 1 л СO2, носит название калорического эквивалента кис­лорода. Зная общее количество O2, использованное организмом, можно вычислить энергетические затраты только в том случае, если известно, какие вещества - белки, жиры или углеводы, оки­слились в теле. Показателем этого может служить дыхательный коэффициент (табл.2).

Дыхательным коэффициентом (ДК) называется отношение объема выделенного СО2 к объему поглощенного О2. Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Для примера рассмотрим, каков будет дыхательный коэффициент при использовании организмом глюкозы. Общий итог окисления молекулы глюкозы можно выразить формулой:

C6H12O6+6O2=6CO2+6H2O

При окислении глюкозы число молекул образовавшегосяСО2равно числу молекул затраченного (поглощенного) О2. Равное количество молекул газа при одной и той же температуре и одном и том же давлении занимает один и тот же объем (закон Авогадро- Жерара). Следовательно, дыхательный коэффициент (отно­шение СО22) при окислении глюкозы и других углеводов равен единице.

При окислении жиров и белков дыхательный коэффициент бу­дет ниже единицы. При окислении жиров дыхательный коэффици­ент равен 0,7. Проиллюстрируем это на примере окисления трипальмитина:

2C3H5(C15H31COO)3+145O2=102CO2+98H2O

Отношение между объёмами углекислого газа и кислорода сос­тавляет в данном случае:

102CO2 / 145O2=0,703

Аналогичный расчет можно сделать и для белка; при его окис­лении в организме дыхательный коэффициент равен 0,8. При сме­шанной пище у человека дыхательный коэффициент обычно ра­вен 0,85-0,89. Определенному дыхательному коэффициенту соответствует определенный калорический эквивалент кислорода, что видно из табл.3.

Таблица 3

Соотношение дыхательного коэффициента и калорического эквивалента кислорода

Калорический эквивалент кислорода Дыхательный коэффициент
0,70 0,75 0,80 0,85 0,90 0,95 1,00
кДж 19,619 19,841 20,101 20,356 20,616 20,871 21,173
ккал 4,686 4,739 4,801 4,862 4,924 4,985 5,057

 

 

Определение энергетического обмена у человека в покое ме­тодом закрытой системы с неполным газовым анализом. Относи­тельное постоянство дыхательного коэффициента (0,85-0,90) у людей при обычном питании в условиях покоя позволяет произво­дить достаточно точное определение энергетического обмена у че­ловека в покое, вычисляя только количество потребленного кисло­рода и беря его калорический эквивалент при усредненном ды­хательном коэффициенте.

Количество потребленного организмом кислорода определяют при помощи различных спирографов.

Определив количество поглощенного кислорода и приняв ус­редненный дыхательный коэффициент равным 0,85, можно рассчи­тать энергообразование в организме; калорический эквивалент 1 л кислорода при данном дыхательном коэффициенте равен 20,356 кДж, т. е. 4,862 ккал (см. табл.). Способ неполного газо­вого анализа благодаря своей простоте получил широкое распро­странение.

Дыхательный коэффициент во время работы. Во время интен­сивной мышечной работы дыхательный коэффициент повышается и в большинстве случаев приближается к единице. Это объясняет­ся тем, что главным источником энергии во время напряженной мышечной деятельности является окисление углеводов. После за­вершения работы дыхательный коэффициент в течение первых нескольких минут так называемого периода восстановления резко снижается до величин меньших, чем исходные, и только спустя 30-50 минут после напряженной работы обычно нормализуется. Эти изменения дыхательного коэффициента показаны на рис. 10.4.

Изменения дыхательного коэффициента после окончания рабо­ты не отражают истинного отношения между используемым в дан­ный момент кислородом и выделенным углекислым газом. Дыхательный коэффи­циент в начале восстановительного периода повышается по сле­дующей причине: в мышцах во время работы накапливается молоч­ная кислота, на окисление которой во время работы не хватало О2 (это так называемый кислородный долг). Молочная кислота поступает в кровь и вытесняет СО2 из гидрокарбонатов, присое­диняя основания. Благодаря этому количество выделенного СО2 больше количества СО2, образовавшегося в данный момент в тка­нях. Обратная картина наблюдается в дальнейшем, когда молоч­ная кислота постепенно исчезает из крови. Одна часть её окисляется, другая ресинтезируется в гликоген, а третья выделяется с мочой и потом. По мере уменьшения количества молочной кислоты осво­бождаются основания, которые до того были отняты у гидрокарбо­натов. Эти основания вновь связывают СО2 и образуют гидрокар­бонаты, поэтому через некоторое время после работы дыхательный коэффициент резко падает вследствие задержки в крови СО2, по­ступающей из тканей.

 







Дата добавления: 2015-10-02; просмотров: 2288. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия