Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЛАБОРАТОРНАЯ РАБОТА №2. ЦЕЛЬ РАБОТЫ: изучить законы колебательного движения , определить ускорения силы тяжести.





ИЗУЧЕНИЕ ЗАКОНОВ КОЛЕБАТЕЛЬНОГО ДВИЖЕНИЕ МАТЕМАТИЧЕСКОГО МАЯТНИКА И ОПРЕДЕЛЕНИЕ УСКОРЕНИЯ СИЛЫ ТЯЖЕСТИ.

 

ЦЕЛЬ РАБОТЫ: изучить законы колебательного движения, определить ускорения силы тяжести.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: математический маятник, секундомер, набор шариков, линейка.

 

1. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ.

 

Движение, при котором тело или система тел через равные промежутки времени отклоняется от положения равновесия и вновь возвращается к нему, называются периодическими колебаниями.

Колебания, при которых изменение колеблющейся величины со временем происходит по закону синуса или косинуса, называются гармоническими.

Уравнение гармонического колебания записывается в виде:

 

 

Гармонические колебания характеризуются следующими параметрами: амплитудой А, периодом Т, частотой υ, фазой φ, круговой частотой ω.

А – амплитуда колебания – это наибольшее смещение от положения равновесия. Амплитуда измеряется в единицах длины (м, см и т. д.).

Т – период колебания – это время, в течении которого совершается одно полное колебание. Период измеряется в секундах.

υ – Частота колебания – это число колебаний, совершаемых в единицу времени. Измеряется в Герцах.

φ – фаза колебания. Фаза определяет положение колеблющейся точки в данный момент времени. В системе СИ фаза измеряется в радианах.

ω – круговая частота измеряется рад/с

Всякое колебательное движение совершается под действием переменной силы. В случае гармонического колебания эта сила пропорциональна смещения и направлена против смещения:

,

 

где К – коэффициент пропорциональности, зависящий от массы тела и круговой частоты.

Примером гармонического колебания может служить колебательной движение математического маятника.

Математическим маятником называют материальную точку, подвешенную на невесомой и недеформируемой нити.

Небольшой тяжелый шарик, подвешенный на тонкой нити (нерастяжимой), является хорошей моделью математического маятника.

Рис.1

Пусть математический маятник длиной l (рис. 1) отклонен от положения равновесия ОВ на малый угол φ ≤ . На шарик действует сила тяжести , направленная вертикально вниз, и сила упругости нити , направленная вдоль нити. Равнодействующая этих сил F будет направлена по касательной к дуге АВ и равна:

 

 

При малых углах φ можно записать:

где Х – дуговое смещение маятника от положения равновесия. Тогда получим:

 

Знак минус указывает на то, что сила F направлена против смещения Х.

Итак, при малых углах отклонения математический маятник совершает гармонические колебания. Период колебаний математического маятника определяется формулой Гюйгенса:

 

где - длина маятника, т. е. расстояние от точки подвеса до центра тяжести маятника.

Из последней формулы видно, что период колебания математического маятника зависит лишь от длины маятника и ускорения силы тяжести и не зависит от амплитуды колебания и от массы маятника. Зная период колебания математического маятника и его длину, можно определить ускорение силы тяжести по формуле:

Ускорением силы тяжести называется то ускорение, которое приобретает тело под действием силы притяжения его к земле.

На основании второго закона Ньютона и закона всемирного тяготения можно записать:

где γ – гравитационная постоянная, равная

М – масса Земли, равна ,

R – расстояние до центра Земли, равное ,

Т. к. Земля не имеет форму правильного шара, то на различных широтах имеет разное значение, а, следовательно, и ускорение силы тяжести на разных широтах будет разное: на экваторе ; на полюсе ; на средней широте .

 







Дата добавления: 2015-10-12; просмотров: 1339. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия