Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Замена переменной – самый общий метод интегрирования





 

Преобладающим методом интегрирования является метод замены переменной под знаком интеграла или, что то же самое, способ подстановки.

Способ подстановки дает возможность интегралы от сложных функций сводить к более простым, а в конечном счете - к табличным интегралам. Для некоторых классов подынтегральных функций можно указать стандартные подстановки, о чем будет сказано в других разделах данного пособия.

Начинать же интегрирование способом подстановки лучше всего с простейших интегралов, приводящихся к виду , где

. Подстановкой интеграл сведётся к интегралу .

 

Иногда удобна подстановка .

Под знаком дифференциала к независимой переменной всегда можно прибавлять произвольное число (нужное нам), т.к. дифференциал суммы есть сумма дифференциалов, и дифференциал константы равен нулю. Например, для интеграла вида можно под знаком дифференциала умножить и разделить на и прибавить . Тогда получим:

где .

После того, как интеграл по новой переменной будет вычислен (взят), в ответе надо перейти к старой переменной, т.е. в полученном решении сделать подстановку (в первом случае) или (во втором). - функция обратная для .

Рассмотрим несколько примеров:

9.

 

-подстановка

 

10.

 

11.

 

 

12.

 

13.

14.

15. В следующем интеграле легко заметить, что , и поэтому

 

16.

 

 

 

Здесь мы выделяем в знаменателе подынтегральной функции полный квадрат и используем постановку .

 

17.

 

18.

 

Приведенные выше интегралы могут быть вычислены как формальной подстановкой, так и с помощью подведения под знак дифференциала некоторого множителя подынтегральной функции.

Для того, чтобы видеть какую подстановку нужно сделать, следует убедиться, что в подынтегральном выражении можно выделить дифференциал новой переменной. Например, в интеграле не рационально делать подстановку , так как . В числителе же подынтегрального выражения мы имеем только . Подстановка приводит интеграл к табличному.

 

19.

20.

В этом разделе мы рассмотрели простейшие подстановки. В более трудных случаях, чем рассмотреные выше, выбор подстановки не столь очевиден. Однако для некоторых классов подынтегральных функций существуют стандартные подстановки. Об этом мы поговорим ниже, в других разделах.

 







Дата добавления: 2015-10-12; просмотров: 562. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия