Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Замена переменной – самый общий метод интегрирования





 

Преобладающим методом интегрирования является метод замены переменной под знаком интеграла или, что то же самое, способ подстановки.

Способ подстановки дает возможность интегралы от сложных функций сводить к более простым, а в конечном счете - к табличным интегралам. Для некоторых классов подынтегральных функций можно указать стандартные подстановки, о чем будет сказано в других разделах данного пособия.

Начинать же интегрирование способом подстановки лучше всего с простейших интегралов, приводящихся к виду , где

. Подстановкой интеграл сведётся к интегралу .

 

Иногда удобна подстановка .

Под знаком дифференциала к независимой переменной всегда можно прибавлять произвольное число (нужное нам), т.к. дифференциал суммы есть сумма дифференциалов, и дифференциал константы равен нулю. Например, для интеграла вида можно под знаком дифференциала умножить и разделить на и прибавить . Тогда получим:

где .

После того, как интеграл по новой переменной будет вычислен (взят), в ответе надо перейти к старой переменной, т.е. в полученном решении сделать подстановку (в первом случае) или (во втором). - функция обратная для .

Рассмотрим несколько примеров:

9.

 

-подстановка

 

10.

 

11.

 

 

12.

 

13.

14.

15. В следующем интеграле легко заметить, что , и поэтому

 

16.

 

 

 

Здесь мы выделяем в знаменателе подынтегральной функции полный квадрат и используем постановку .

 

17.

 

18.

 

Приведенные выше интегралы могут быть вычислены как формальной подстановкой, так и с помощью подведения под знак дифференциала некоторого множителя подынтегральной функции.

Для того, чтобы видеть какую подстановку нужно сделать, следует убедиться, что в подынтегральном выражении можно выделить дифференциал новой переменной. Например, в интеграле не рационально делать подстановку , так как . В числителе же подынтегрального выражения мы имеем только . Подстановка приводит интеграл к табличному.

 

19.

20.

В этом разделе мы рассмотрели простейшие подстановки. В более трудных случаях, чем рассмотреные выше, выбор подстановки не столь очевиден. Однако для некоторых классов подынтегральных функций существуют стандартные подстановки. Об этом мы поговорим ниже, в других разделах.

 







Дата добавления: 2015-10-12; просмотров: 562. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия