Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Где - функция четная относительно и ,т.е. .В этом случае к более простым вычислениям приводит подстановка .





Тогда

;

45)

Интегрирование рациональных функций, содержащих иррациональности

Интегрирование функций, содержащих иррациональности, часто приводит к громоздким вычислениям; кроме того, оно не всегда возможно в конечном виде. Здесь мы рассмотрим только наиболее простые случаи. Подробнее с интегрированием функций, содержащих иррациональности, можно ознакомится в [1],[5] - [8].

Где -рациональная, т.е. содержащая только арифметические действия, функция своих аргументов. Здесь следует сделать подстановку,такую, чтобы корни степени одновременно извлекались (наименьшее общее кратное чисел).

Примеры:

46)

47)

2) Для вычисления интеграла вида используется подстановка .

Пример:

 

48)

Последний интеграл вычисляется с помощью интегрирования по частям .

3) Следующие интегралы берутся с помощью

тригонометрических подстановок

Для подстановка ; для подстановка .

 

Вышеуказанные подстановки легко избавляют подынтегральное выражение от иррациональности. Иногда интегралы этих типов могут быть также взяты и при помощи других подстановок.

Примеры:

49)

50)

Заключение

В пособии рассмотрены основные (простейшие) методы вычисления неопределённых интегралов. Для знакомства с другими методами можно обратиться к рекомендованному списку литературы. Но и в этих книгах нет исчерпывающего набора методов интегрирования. Интегрирование остаётся «искусством» вычисления интегралов.







Дата добавления: 2015-10-12; просмотров: 432. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия