Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование рациональных дробей путем разложения их на сумму простейших дробей





Рациональной дробью называется дробь вида ,где и полиномы степеней m и n –соответственно. Если

m < n, то дробь называется правильной. Во всех остальных случаях – неправильной.

Раскладывать на простейшие слагаемые можно только правильные дроби. Если дробь неправильная, то надо разделить числитель на знаменатель с остатком, и этот остаток раскладывать на сумму простейших дробей (для «целой части» получится сумма степенных функций).

Т.к. знаменатель есть полином n-й степени, то он имеет ровно n корней, среди которых могут быть вещественные (различные и кратные) и комплексно-сопряженные (различные и кратные).

В первом случае полином делится на (для каждого из простых корней ) или на (для каждого из кратных корней; k - кратность корня). Во втором случае полином делится на (для простой пары комплексно- сопряженных корней) или на (для каждой кратной пары комплексно сопряженных корней; l - их кратность).

Поэтому знаменатель можно разложить на множители вышеуказанного вида.

Представим правильную рациональную дробь в виде суммы простейших дробей нижеследующего вида:

- для каждого из простых вещественных корней;

- для каждого из кратных вещественных корней;

- для каждой из простых пар комплексно-сопряженных корней;

- для каждой из кратных пар комплексно-сопряженных корней.

Далее следует определить коэффициенты в числителях вышеуказанных разложений. Для этого приравняем и сумму простейших дробей (их количество и вид зависят от корней полинома ). Приведя эту сумму к общему знаменателю, получим равенство двух дробей, у которых равны знаменатели, а, значит, равны и числители. Поскольку числители должны быть равны при всех значениях независимой переменной , должны быть равны коэффициенты при одинаковых степенях . Приравнивая коэффициенты при одинаковых степенях в ичислителе, получившимся после приведения к общему знаменателю суммы простейших дробей,получаем систему линейных алгебраических уравнений для определения коэффициентов . Вышеописанный метод носит название Метод неопределенных коэффициентов.

Другой метод определения коэффициентов носит название Метод частных значений. Он заключается в том, что после приравнивания числителей, переменной придают произвольные числовые значения, например значения действительных корней знаменателя (если они есть). Таким образом, также получается необходимое число уравнений для определения коэффициентов .

Если знаменатель раскладываемой дроби имеет как вещественные, так и мнимые корни, то эти способы можно комбинировать.

После вычисления значений коэффициентов остается проинтегрировать получившуюся сумму простейших дробей и записать ответ.

Рассмотрим несколько примеров:

31.

1) Дробь неправильная. Выделим целую часть. Для этого разделим числитель на знаменатель.

__

__

Таким образом

2) Разложим на множители знаменатель дроби

Корни знаменателя вещественные, разные.

3) Разложим выделенную правильную дробь на простейшие

 

 

4) Для определения коэффициентов A, B,C, приравняем числители двух равных дробей (рассматриваемой правильной дроби и суммы простейших дробей после приведения её к общему знаменателю)

Вычислить коэффициенты A, B,C, здесь удобнее методом частных значений. Полагая в последнем выражении последовательно ,получим

 

Окончательно получаем

32)

Это дробь правильная. Корни знаменателя вещественные, среди них есть кратные (). Поэтому

Приводим сумму простейших дробей к общему знаменателю и приравниваем числители получившихся дробей

Коэффициенты и найдем методом частных значений, используя вещественные корни знаменателя и ,остальные коэффициенты найдем методом неопределённых коэффициентов.

,

Итак

33)

Здесь знаменатель подынтегральной функции имеет комплексные корни. Напомним, что каждому неповторяющемуся квадратичному множителю вида ,содержащемуся в знаменателе будет соответствовать простейшая дробь вида . То есть:

Аналогично получаем

34)

 

35)

Более подробную информацию об интегрировании простейших дробей можно получить в книгах [1], [6], [7] и [8].







Дата добавления: 2015-10-12; просмотров: 557. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия