Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование рациональных дробей путем разложения их на сумму простейших дробей





Рациональной дробью называется дробь вида ,где и полиномы степеней m и n –соответственно. Если

m < n, то дробь называется правильной. Во всех остальных случаях – неправильной.

Раскладывать на простейшие слагаемые можно только правильные дроби. Если дробь неправильная, то надо разделить числитель на знаменатель с остатком, и этот остаток раскладывать на сумму простейших дробей (для «целой части» получится сумма степенных функций).

Т.к. знаменатель есть полином n-й степени, то он имеет ровно n корней, среди которых могут быть вещественные (различные и кратные) и комплексно-сопряженные (различные и кратные).

В первом случае полином делится на (для каждого из простых корней ) или на (для каждого из кратных корней; k - кратность корня). Во втором случае полином делится на (для простой пары комплексно- сопряженных корней) или на (для каждой кратной пары комплексно сопряженных корней; l - их кратность).

Поэтому знаменатель можно разложить на множители вышеуказанного вида.

Представим правильную рациональную дробь в виде суммы простейших дробей нижеследующего вида:

- для каждого из простых вещественных корней;

- для каждого из кратных вещественных корней;

- для каждой из простых пар комплексно-сопряженных корней;

- для каждой из кратных пар комплексно-сопряженных корней.

Далее следует определить коэффициенты в числителях вышеуказанных разложений. Для этого приравняем и сумму простейших дробей (их количество и вид зависят от корней полинома ). Приведя эту сумму к общему знаменателю, получим равенство двух дробей, у которых равны знаменатели, а, значит, равны и числители. Поскольку числители должны быть равны при всех значениях независимой переменной , должны быть равны коэффициенты при одинаковых степенях . Приравнивая коэффициенты при одинаковых степенях в ичислителе, получившимся после приведения к общему знаменателю суммы простейших дробей,получаем систему линейных алгебраических уравнений для определения коэффициентов . Вышеописанный метод носит название Метод неопределенных коэффициентов.

Другой метод определения коэффициентов носит название Метод частных значений. Он заключается в том, что после приравнивания числителей, переменной придают произвольные числовые значения, например значения действительных корней знаменателя (если они есть). Таким образом, также получается необходимое число уравнений для определения коэффициентов .

Если знаменатель раскладываемой дроби имеет как вещественные, так и мнимые корни, то эти способы можно комбинировать.

После вычисления значений коэффициентов остается проинтегрировать получившуюся сумму простейших дробей и записать ответ.

Рассмотрим несколько примеров:

31.

1) Дробь неправильная. Выделим целую часть. Для этого разделим числитель на знаменатель.

__

__

Таким образом

2) Разложим на множители знаменатель дроби

Корни знаменателя вещественные, разные.

3) Разложим выделенную правильную дробь на простейшие

 

 

4) Для определения коэффициентов A, B,C, приравняем числители двух равных дробей (рассматриваемой правильной дроби и суммы простейших дробей после приведения её к общему знаменателю)

Вычислить коэффициенты A, B,C, здесь удобнее методом частных значений. Полагая в последнем выражении последовательно ,получим

 

Окончательно получаем

32)

Это дробь правильная. Корни знаменателя вещественные, среди них есть кратные (). Поэтому

Приводим сумму простейших дробей к общему знаменателю и приравниваем числители получившихся дробей

Коэффициенты и найдем методом частных значений, используя вещественные корни знаменателя и ,остальные коэффициенты найдем методом неопределённых коэффициентов.

,

Итак

33)

Здесь знаменатель подынтегральной функции имеет комплексные корни. Напомним, что каждому неповторяющемуся квадратичному множителю вида ,содержащемуся в знаменателе будет соответствовать простейшая дробь вида . То есть:

Аналогично получаем

34)

 

35)

Более подробную информацию об интегрировании простейших дробей можно получить в книгах [1], [6], [7] и [8].







Дата добавления: 2015-10-12; просмотров: 557. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия