ШЕСТИЧЛЕННЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
Представителями шестичленных гетероциклов с одним гетероатомом азота являются пиридин и хинолин (бензопиридин).
Пиридин и хинолин относят к π-недостаточным системам: электронная плотность ароматических колец понижена в сравнении с бензолом. Это связано с электроноакцепторным влиянием пиридинового атома азота. В результате пиридин труднее, чем бензол, вступает в реакции электрофильного замещения. Замещение протекает по β-положению цикла, т.к. в нем электронная плотность выше, чем в α- и γ-положениях:
Как и бензол, пиридин вступает в реакции нитрования, бромирования, сульфирования, но в гораздо более жестких условиях:
Реакции электрофильного замещения в хинолине протекают по положениям 5 и 8 бензольного кольца, на которое электроноакцепторный гетероатом азота влияет в меньшей степени, чем на собственное – пиридиновое. Реакции идут труднее, чем в бензоле, но легче, чем в пиридине:
Из-за пониженной электронной плотности в ароматическом кольце для пиридина и хинолина характерны реакции нуклеофильного замешения. Они протекают по 2 (α-) положению в пиридине и положению 2 в хинолине. Примерами нуклеофильного замещения являются реакции аминирования и гидроксилирования.
Аналогичным образом в реакции нуклеофильного замещения вступает хинолин.
Поэтому водные растворы пиридина имеют щелочную реакцию. С кислотами Льюиса пиридин образует комплексы по донорно-акцепторному механизму. Например, при взаимодействии пиридина с триоксидом серы образуется пиридинсульфотриоксид, который применяют для сульфирования ацидофобных гетероциклов (см. стр. 134).
За счет неподеленной электронной пары азота пиридин проявляет также нуклеофильные свойства, например, в реакциях алкилирования галогеналканами:
Катион N-метилпиридиния является ароматической структурой, но еще более π-недостаточной, чем сам пиридин (из-за положительного заряда на атоме азота). Ароматическое кольцо становится еще более способным к взаимодействию с нуклеофилами. Например, при действии гидрид-аниона протекает реакция нуклеофильного присоединения и N-метилпиридиний-катион восстанавливается в 1,4-дигидро-N-метилпиридин.
1,4-дигидро-N-метилпиридин не ароматичен (атом углерода в 4 положении sp3-гибридизован и не принимает участия в сопряжении), его молекула нестабильна и стремится за счет обратной реакции окисления вернуться в ароматическое состояние. Эти реакции окисления-восстановления моделируют действие важного кофермента НАД+, в структуру которого входит замещенный катион пиридиния.
В ходе реакции дегидрирования in vivo, которая может рассматриваться как особый случай окисления, субстрат теряет два атома водорода, т.е. протон и гидрид-анион (H+ и H-). Кофермент НАД+ принимает гидрид-анион, и пиридиниевое кольцо переходит в восстановленную форму – 1,4-дигидропиридиновый фрагмент. Этот процесс обратим.
Типичный пример биохимических реакций с участием НАД+ – окисление спиртовых групп в альдегидные (превращение ретинола в ретиналь). НАДН, наоборот, участвует в восстановлении карбонильных групп в спиртовые (например, при превращении пировиноградной кислоты в молочную). Многие производные пиридина являются биологически важными соединениями, используются в медицине. Например, витамин B6 – пиридоксаль. В виде сложного эфира с фосфорной кислотой (пиридоксальфосфата) он участвует в реакции переаминирования, ведущей к получению α-аминокислот.
Изоникотиновая (γ-пиридинкарбоновая) кислота образуется при окислении γ-пиколина. Гидразид изоникотиновой кислоты – тубазид – используется при лечении туберкулеза. Для снижения токсичности был получен гидразон тубазида с ароматическим альдегидом ванилином – препарат фтивазид:
Некоторые производные хинолина также используются в медицине. Например, 8-гидроксихинолин (оксин) и его производные применяются как антисептические средства.
Нитроксолин применяется для лечения инфекций мочевыводящих путей.
|