Современное состояние электроники
Для современной электроники характерно широкое использование интегральных схем (ИС). Разработка, совершенствование и внедрение ИС в бурно развивающуюся отрасль вычислительной техники и различных автоматических систем управления потребовали интенсификации работ прежде всего в области физической электроники. Рассмотрение работы электронных устройств, составляющих основу интегральных, схем мы начнем с рассмотрения модели структур полупроводников Модели структур полупроводников Термином «модель» принято обозначать некоторую совокупность идей и представлений, определенную математическую форму. С одной стороны, описание с помощью моделей позволяет логически объяснить физические явления и их свойства, с другой - в некоторых особых случаях модель позволяет открывать новые, ранее не известные факты. Таково общее определение этого термина.
§ Модель ковалентной связи настолько проста, что ее применимость ограничена. Ценность заключается в том, что она позволяет описать процессы переноса заряда в полупроводнике на интуитивном уровне. Данная модель дает возможность получить некоторые качественные представления о внутренних физических процессах в кристаллических твердых телах. Эти сведения необходимы на этапе, предшествующем строгому математическому изучению. § Модель энергетических зон принадлежит к числу наиболее часто используемых, поскольку позволяет количественно изучать явления переноса в полупроводниковых устройствах. Используется как в графической, так и в аналитической формах. При элементарном рассмотрении обычно начинают с модели ковалентной связи, а затем переходят к модели энергетических зон. Это позволяет с разных сторон изучать физику движения электронов и дырок - носителей заряда в полупроводнике. § Математическая модель основывается на некоторых физических гипотезах и дает математическую формулировку процессов в полупроводниковых материалах и устройствах на их основе. Является основным инструментом теоретического исследования. § Аналоговая модель, или эквивалентная схема, является, повидимому, наиболее распространенной. В общем случае имеет вид некоторого «черного ящика», для которого указаны связи между токами и напряжениями. По этим причинам имеет лишь косвенное отношение к физическим процессам в устройстве. Ценность аналоговой модели состоит в удобстве ее практического использования. Модель ковалентной связи В зависимости от структурных особенностей твердых тел принято различать: § аморфные вещества, не имеющие какой-либо определенной структуры; § поликристаллические вещества, состоящие из отдельных гранул или малых областей. Каждая гранула имеет четко выраженную структуру, однако размеры и ориентация гранул в соседних областях совершенно произвольны; § монокристаллические вещества, атомы которых пространственно упорядочены и образуют трехмерную периодическую структуру, называемую кристаллической решеткой. Для обеспечения требуемых свойств полупроводниковые устройства и интегральные схемы выполняют из монокристаллов, среди которых наибольшее значение имеют монокристаллы кремния (Si); данный полупроводниковый материал в настоящее время используют чаще всего. Основную роль в процессе объединения атомов в кристалл играют электроны. Межатомная связь возникает благодаря тому, что атомы в веществе расположены близко друг к другу. Различают ионную, металлическую и ковалентную связи. При ионной связи электроны перемещаются от одних атомов к другим. Как следствие, в структуре возникают ионы. При металлической связи кристаллическая решетка из положительно заряженных ионов окружена «электронным газом». Наконец, в случае ковалентной связи внешние, так называемые валентные, электроны становятся общими для ближайших соседних атомов.
|