Особенности интегральных схем как нового типа электронных приборов.
Поскольку ИС, подобно транзистору, представляет собой конструктивное единое целое, выполняет определенную функцию и должна удовлетворять определенным требованиям при испытаниях, поставках и эксплуатации, она относится к разряду электронных приборов. Однако по сравнению с диодом, транзистором и т.п. ИС является качественно новым типом прибора. Первая - главная особенность ИС как электронного прибора состоит в том, что она самостоятельно выполняет законченную, часто весьма сложную функцию, тогда как элементарные электронные приборы выполняют аналогичную функцию только в ансамбле с другими компонентами. Например, отдельный транзистор не может обеспечить усиление сигнала или запоминание информации. Для этого нужно из нескольких транзисторов, резисторов и других компонентов собрать (спаять) соответствующую схему. В микроэлектронике же указанные функции выполняются одним прибором - интегральной схемой: она может быть усилителем, запоминающим устройством и т.п. Второй важной особенностью ИС является то, что повышение функциональной сложности этого прибора по сравнению с элементарными не сопровождается ухудшением какого-либо из основных показателей (надежность, стоимость и т.п.). Более того, все эти показатели улучшаются. Поскольку габариты и масса простых и средних ИС близки к габаритам и массе дискретных транзисторов, можно считать, что в первом приближении выигрыш по этим показателям при переходе от дискретных схем к интегральным определяется степенью интеграции и может достигать сотен и тысяч раз. Поскольку надежность работы полупроводникового прибора в аппаратуре определяется прежде всего количеством паяных и (в меньшей степени) сварных соединений, то ИС, у которых межсоединения элементов осуществляются путем металлизации (т.е. без пайки и сварки), обладают заведомо повышенной надежностью по сравнению с дискретными схемами, выполняющими ту же функцию. По мере увеличения степени интеграции этот выигрыш возрастает. Поскольку все элементы ИС изготавливаются в едином технологическом цикле, то количество технологических операций по их изготовлению не намного превышает количество операций по изготовлению отдельного транзистора. Поэтому стоимость ИС при прочих равных условиях близка к стоимости одного транзистора. Значит, в зависимости от степени интеграции (или, точнее, от плотности упаковки), стоимость одного элемента ИС по сравнению со стоимостью аналогичного дискретного компонента может быть в сотни раз меньше. Такое же соотношение имеет место между стоимостью ИС и стоимостью аналогичной схемы, выполненной на дискретных компонентах. Третья особенность ИС состоит в предпочтительности активных элементов перед пассивными - принцип, диаметрально противоположный тому, который свойствен дискретной транзисторной технике. В последней активные компоненты, особенно транзисторы, наиболее дорогие, и потому оптимизация схемы при прочих равных условиях состоит в уменьшении количества активных компонентов. В ИС дело обстоит иначе: у них задана стоимость не элемента, а кристалла; поэтому целесообразно размещать на кристалле как можно больше элементов с минимальной площадью. Минимальную площадь имеют активные элементы - транзисторы и диоды, а максимальную - пассивные. Следовательно, оптимальная ИС - это ИС, у которой сведены к минимуму количество и номиналы резисторов и, особенно, конденсаторов. Четвертая особенность ИС связана с тем, что смежные элементы расположены друг от друга на расстоянии, измеряемом в мкм или долях мкм. На таких малых расстояниях различие электрофизических свойств материала маловероятно, а, следовательно, маловероятен и значительный разброс параметров у смежных элементов. Иначе говоря, параметры смежных элементов взаимосвязаны - коррелированы. Эта корреляция сохраняется и при изменении температуры: у смежных элементов температурные коэффициенты параметров практически одинаковы. Корреляция между параметрами смежных элементов используется при проектировании некоторых ИС с целью снизить влияние разброса параметров и изменений температуры. Гибридные ИС тоже представляют собой тип электронных приборов. Однако наличие навесных компонентов делает их менее специфичными, чем полупроводниковые ИС. Остается в силе фундаментальная черта всякой ИС - функциональная сложность прибора, что, как и при использовании полупроводниковых ИС, качественно меняет структуру электронной аппаратуры. Спецификой ГИС как прибора могут быть либо высокие номиналы резисторов и конденсаторов, недостижимые в полупроводниковых ИС, либо прецизионность резисторов, либо, наконец, повышенная функциональная сложность. ГИС - это гибкий, дешевый, оперативно проектируемый тип ИС, хорошо приспособленный к решению специальных, частных задач.
Используемая литература
|