Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Цилиндрическая система координат.





Связь координат произвольной точки Р пространства в цилиндрической системе с координатами в декартовой прямоугольной системе осуществляется по формулам:

 

Для представления тройного интеграла в цилиндрических координатах вычисляем Якобиан:

 

 

 

Итого:

 

Сферическая система координат.

 

Связь координат произвольной точки Р пространства в сферической системе с координатами в декартовой прямоугольной системе осуществляется по формулам:

 

Для представления тройного интеграла в сферических координатах вычисляем Якобиан:

Окончательно получаем:

 

38 вопрос

 

Корни многочлена

Как мы видели выше, методом выделения полного квадрата можно найти корни квадратного трехчлена. В случае многочленов высших степеней найти корни становится гораздо труднее, а иногда и просто невозможно. Попробуем это сделать там, где это достаточно просто. Рассмотрим многочлен
где a 1, a 2,..., a n − целые числа, a n ≠ 0. Теорема о рациональных корнях многочлена Если многочлен
с целыми коэффициентами имеет рациональный корень то число p является делителем числа (свободного члена), а число q является делителем числа (старшего коэффициента).

Доказательство

Действительно, если число является корнем многочлена то а именно:
Умножим обе части этого уравнения на получим:
Так как − целые числа, то в скобке стоит целое число. Значит, вся правая часть этого равенства делится на q, так как q входит в неё в качестве сомножителя. А значит и левая часть тождества делится на q, так как она равна правой. Число p не делится на q, так как иначе дробь была бы сократимой, значит и не делится на q. Следовательно, на q делится единственный из оставшихся сомножителей левой части, а именно Аналогично доказывается, что делится на p. Теорема доказана.

 

 

39 вопрос

свойства:

1) Криволинейный интеграл при перемене направления кривой меняет знак.

2)

3)

4)

5) Криволинейный интеграл по замкнутой кривой L не зависит от выбора начальной точки, а зависит только от направления обхода кривой.







Дата добавления: 2015-10-12; просмотров: 404. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия