Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие случайного сигнала (СС) и применение для его описания законов распределения и неслучайных числовых характеристик закона распределения.





Понятие случайного сигнала (СС) и применение для его описания законов распределения и неслучайных числовых характеристик закона распределения.

 

Колебание Х(t) называется случайным сигналом, если его значения в любой момент времени являются случайными величинами Х(ti).

Хi=Х(ti) – одномерная случайная величина

Если генератор случайного колебания включить на время Т и записать результат х(t), то этот результат принято называть– реализацией СС.

Реализация СС – это детерминированный сигнал.

Если многократно повторить этот эксперимент, то получится ансамбль реализаций { хк(t) }.

 

Случайную величину можно назвать сечением случайного сигнала в момент времени .

Полное статистическое (вероятностное) описание одномерной случайной величины (СВ) Х(t1) дает одномерный закон распределения СВ.

Имеются две разновидности одномерного закона распределения.

1) Интегральный закон распределения (функция распределения)

- вероятность того, что СВ не превышает некоторого значения х.

Значения функции распределения можно найти по ансамблю реализаций:

(при больших N)

N – полное число реализаций

l – число реализаций, удовлетворяющих условию Х(t1)≤x

 

Свойства функции распределения:

- безразмерная.

- неубывающая.

-

-

-

 

 

2) Дифференциальный закон распределения (плотность вероятности).

 

Свойства плотности вероятности:

 

- размерность [1/x]

- W(x)≥0

- свойство нормировки

-

Пример:

 

Заштрихованная площадь характеризует вероятность попадания СВ в интервал от a до b.

 

В общем случае одномерный закон распределения зависит от того, в какой точке проведено сечение, т.е. одномерный закон распределения – функция времени.

Кроме одномерного закона распределения для описания случайных величин можно использовать неслучайные числовые характеристики одномерного закона распределения (моменты распределения).

Неслучайные числовые характеристики делятся на:

1) Начальные моменты распределения.

- начальный момент первого порядка (математическое ожидание СВ) – это среднее значение СВ. Усреднение проводиться по ансамблю реализаций и обозначается .

- начальный момент второго порядка – это среднее значение квадрата СВ.

- начальный момент k-порядка – среднее значение СВ в степени k.

 

2) Центральные моменты распределения – начальные моменты от центрированной СВ:

Второй центральный момент

В общем случае неслучайные числовые характеристики зависят от момента времени, в который проведено сечение, т.е.

mx(t), - функции времени.

 

Знание одномерных законов распределения в различных сечениях СС не дает полного описания СС даже если число сечений стремится к бесконечности, так как одномерный закон распределения не содержит информации о взаимосвязи значений СВ в разных сечениях.

Для более полного описания СС необходимо рассматривать совокупность сечений СС как n-мерную случайную величину {X1,X2,…,Xn}. Для описания n-мерной случайной величины применяют n-мерный закон распределения.

W(x1 x2, …xn) – n-мерная плотность вероятности.

Свойства n-мерной плотности.

- нормировка

- зная n-мерную плотность можно найти одномерную плотность в любом сечении

- статистическая независимость сечений. Два сечения называются статистически независимыми, если двумерная плотность равна произведению одномерных плотностей.

Если все сечения статически независимы, то

Заметим, что n-мерный закон распределения дает полное статистическое описание СС при n→∞.

 







Дата добавления: 2015-10-12; просмотров: 469. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия