Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задачи и цели





Вследствие повсеместного использования вычислительной техники бурно развивается направление численного моделирования (англ. numerical simulation [4]). Численное моделирование, является промежуточным элементом между аналитическими методами изучения и физическими экспериментами.[5] Рост количества задач, для решения которых необходимо использовать параллельные вычисления, обусловлен:

  • возможностью изучать явления, которые являются либо слишком сложными для исследования аналитическими методами, либо слишком дорогостоящими или опасными для экспериментального изучения[5]
  • быстрым ростом сложности объектов моделирования (усложнение и увеличение систем)[4]
  • возникновением необходимости решения задач, для которых необходимо проведение анализа сложного поведения (например, условий перехода, к так называемому, детерминированному хаосу)[4]
  • необходимостью управления сложными промышленными и технологическими процессами в режиме реального времени и в условиях

неопределенности[4][5][6]

  • ростом числа задач, для решения которых необходимо обрабатывать гигантские объемы информации (например, 3D моделирование)[4]

При этом, использование численных моделей и кластерных систем, позволяет значительно уменьшить стоимость процесса научного и технологического поиска. Кластерные системы в последние годы широко используются во всем мире как дешевая альтернатива суперкомпьютерам. Система требуемой производительности собирается из готовых, серийно выпускаемых компьютеров, объединенных, опять же, с помощью серийно выпускаемого коммуникационного оборудования. Это, с одной стороны, увеличивает доступность суперкомпьютерных технологий, а с другой, повышает актуальность их освоения, поскольку для всех типов многопроцессорных систем требуется использование специальных технологий программирования для того, чтобы программы могли в полной мере использовать ресурсы высокопроизводительной вычислительной системы.[5]

Создать программу для выполнения которой будут задействованы все ресурсы суперкомпьютера не всегда возможно. В самом деле, при разработке параллельной программы для распределенной системы мало разбить программу на параллельные потоки. Для эффективного использования ресурсов необходимо обеспечить равномерную загрузку каждого из узлов кластера, что в свою очередь означает, что все потоки программы должны выполнить примерно одинаковый объем вычислений.[5]

Рассмотрим частный случай, когда при решении некоторой параметрической задачи для разных значений параметров время поиска решения может значительно различаться. Тогда мы получим значительный перекос загрузки узлов кластера. В действительности практически любая вычислительная задача выполняется в кластере не равномерно.[5]

Несмотря на это, использование кластерных систем всегда более эффективно для обслуживания вычислительных потребностей большого количества пользователей, чем использование эквивалентного количества однопроцессорных рабочих станций, так как в этом случае с помощью системы управления заданиями легче обеспечить равномерную и более эффективную загрузку вычислительных ресурсов.[5]

Получение высокой эффективности выполнения программ усложняет использование параллельных систем.[7] Согласно отчету Межведомственной комиссии по развитию сверхмощных вычислений США эффективность современных (2004 г.) параллельных систем в среднем составляет менее 10%.[8]

Доминирующее положение при разработке параллельных программ для параллельных систем занимает стандарт MPI (англ. Message Passing Interface). Программа, разработанная в модели передачи сообщений, может быть представлена информационным графом, вершинам которого соответствуют параллельные ветви программы, а ребрам коммуникационные связи между ними. Это можно использовать для диспетчеризации заданий и их вычислительных потоков. Учитывая гетерогенность вычислительных ресурсов и сред передачи данных в кластере, можно осуществить распределение вычислительных потоков (ветвей) по вычислительным узлам так, чтобы минимизировать накладные расходы на обмен данными между потоками и выровнять вычислительную нагрузку между узлами. Для этого необходимо обладать информацией о мощности и загруженности узлов и структуре параллельных программ, которые ожидают выполнения.[9]

В этой книге описываются методы управления вычислительными заданиями в параллельных кластерных системах с использованием программы мониторинга Ganglia и интерфейса передачи сообщений MPI, с целью увеличения эффективности кластеров и более равномерного распределения нагрузки между узлами кластера.

Из готовых программных решений для динамического управления нагрузкой и распределения ресурсов внутри кластера можно выделить менеджер ресурсов Torque в связке с локальным планировщиком задач Maui. Именно эти программные продукты наиболее часто используются для этих целей. Большим плюсом этого ПО является то, что это продукты с открытым кодом. Менеджер ресурсов Torque позволяет автоматически распределять вычислительные ресурсы между задачами, управлять порядком их запуска, временем работы, получать информацию о состоянии очередей. При невозможности запуска задач немедленно, они ставятся в очередь и ожидают, пока не освободятся нужные ресурсы.[7].

Однако, эти программы применимы только в рамках локального кластера. Они не используются для диспетчеризации параллельных программ в пространственно распределенных (GRID, мультикопьютинг) системах.

Существует множество аналогичных специализированных пакетов для централизованной диспетчеризации параллельных программ в пространственно распределенных системах: Grid-Way, CSF, Nimrod/G, Condor-G, GrADS, AppLeS, DIRAC, WMS и др.[7] Но описание методов управления пространственно распределенными (GRID, мультикопьютинг) системами выходит за рамки этой книги.







Дата добавления: 2015-10-12; просмотров: 654. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия