Answer: E.
64. Conversion of sinusoid v(t)= - 20sin100t in rectangular form gives us A. 10 – j17.3 B. 20 – j17.3 C. 0 + j20 D. 20 + j17.3 E. 10 – j15.3 Solution: v(t)= – 20sin100t = – 20cos(100t – 90°) 1st way: we rotate vector of length 20 by –90 from starting point on 180 degrees on 90° clockwise. We get vector of length 20 on imaginary axis.
2nd way: V = –20∟–90° V= –20cos(–90) –j20sin(–90)=0–j20(–1)=0+j20. Answer: C.
65. Conversion of phasor 169∟- 45° at f=60Hz to sinusoid gives us A. 169cos(150t-45°) B. 169cos(377t-45°) C. 169cos(377t+45°) D. 169cos(233t-45°) E. 169cos(155t-45°) Solution: ω=2πf=2*3.14*60=377 169∟- 45° = 169cos(377t-45°) Answer: B.
66. v1(t)= 10cos(1000t - 45°) and v2(t)= 5cos(1000t+30°). Find the sum of two voltages as phasor. A. V=11.4+j4.57 B. V=11.4 - j4.57 C. V=4.57+j11.4 D. V=4.57-j11.4 E. V=6+j6.4
Solution: 10cos(1000t - 45°)=10∟- 45° = 10cos(- 45)+j10sin(-45) = 7.07 – j7.07 5cos(1000t+30°)=5∟30° = 5cos(30)+j5sin(30) = 4.33+j2.5 V=(7.07 – j7.07) + (4.33+j2.5) = 11.4 – j4.57 Answer: B.
67. L=12 mH, ω=106rad/s. Impedance is equal to A. 12kΩ B.j12kΩ; C. - j12kΩ D. j1200Ω E. - j1200Ω
Solution: ZL=jωL=j12000=j12kΩ Answer: B.
68. What is time constant for the circuit in Fig.10? A. 3L/5R B. L/3R C. 2L/3R D. 3R/2L E. 2L/5R Fig. 10 Solution: TC=GNL ; Answer: A.
69. Investigate the statements. I. A phasor is a complex number representing the amplitude and phase angle of a sinusoidal voltage or current. II. Impedance is the proportionality constant relating phasor voltage and phasor current in linear, two-terminal elements. III. The sum of phasor currents at a node is zero A.false, true, true B. true, false, true C. true, true, false D. true, false, false E. false, false, true
Solution: I. True. II. True. III. False. The algebraic sum of phasor currents at a node is zero.
|