Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Гидродинамика





Гидродинамика изучает движение жидкости, которое может быть установившимся и не установившимся.

Движение называется установившимся, если в каждой точке неподвижного пространства, занятого движущейся жидкостью, ско-

 

 

рости не зависят от времени и, следовательно, остаются постоянными. В противном случае движение является неустановившимся.

Характер движения жидкости может быть ламинарным и турбулентным. Под ламинарным движением жидкости понимают такое движение, в котором отсутствует пульсация скоростей, приводящая к перемешиванию частиц. Если движение жидкости происходит с пульсацией скоростей, вызывающей перемешивание частиц потока, то такое движение называется турбулентным.

В гидродинамике используется понятие о линиях тока. Линии тока - линии, касающиеся вектора скорости потока. При установившемся движении жидкости линии тока и траектории движения частиц жидкости совпадают, при неустановившемся - не совпадают.

Поверхность, образуемую линиями тока, проходящими через замкнутый контур, называют трубкой тока; жидкость, заполнившая трубку тока, - элементарной струйкой.

Наглядное представление о линиях тока дает рассмотрение обтекания крыла самолета равномерным потоком воздуха. Из рис.3. видно, что снизу линии тока не очень сильно искажены, т.к. там увеличение скорости потока незначительно. Верхняя сторона крыла гораздо сильнее изменяет течение воздуха - там линии тока сжимаются и скорость заметно больше, чем в самом потоке.

 

       
   
 

Рис.3. Обтекания крыла равномерным Рис.4. К выводу уравнения

потоком воздуха. Бернулли.

 

Описать движение жидкости гораздо труднее, чем решить задачи гидростатики, поэтому в гидродинамике широко используют уравнения неразрывности и уравнения Бернулли.

 

 

Уравнение неразрывности выражает закон сохранения масс и используется в форме:

υ1S1 = υ2S2 = …= υnSn = Q = const.

 

Здесь υ-скорость жидкости, S - площадь сечения трубки тока, Q - объемный расход потока. Сформулировать этот закон можно так: через любое поперечное сечение трубки тока в единицу времени протекает одинаковое количество жидкости.

Одно из важнейших уравнений гидромеханики было получено Даниилом Бернулли (рис.4.). Ему впервые удалось описать движение несжимаемой идеальной жидкости (силы трения между элементами идеальной жидкости, а также между идеальной жидкостью и стенками сосуда отсутствуют). Уравнение Бернулли имеет вид:

р + ρυ2/2 + ρgh = const,

где р - давление жидкости, ρ - ее плотность, υ - скорость движения, g - ускорение свободного падения и h - высота, на которой находится элемент жидкости. Уравнение Бернулли выражает закон сохранения энергии и условие неразрывности течения идеальной жидкости.

В этом уравнении все слагаемые имеют размерность давления и соответственно называются:

р - статическое давление;

ρυ2/2 - динамическое давление;

ρgh - весовое давление.

Можно отметить, что при отсутствии скорости уравнение Бернулли превращается в гидростатическую формулу. Изменение скорости, согласно второму закону Ньютона, происходит под действием силы, которая действует на жидкость, - в данном случае это либо сила тяжести, либо разность давлений, действующих на объем текущей жидкости.

В уравнении Бернулли два слагаемых:

ρυ2/2 - кинетическая энергия единицы объема движущейся жидкости и ρgh - потенциальная энергия единицы объема жидкости,

точно такие, как в уравнении сохранения энергии для материальной точки. Специфика гидромеханики проявляется в присутствии давления р - перепад давлений в разных частях трубки тока заставляет жидкость двигаться с ускорением, и именно поэтому в формуле Бернулли помимо кинетической и потенциальной энергий единицы объема жидкости присутствует еще и давление.

 

Следовательно, если труба (или трубка тока) устроена так, что давление в ней остается постоянным, уравнение Бернулли для жидкости просто совпадает с законом сохранения энергии для материальной точки. Если же труба устроена так, что можно не учитывать изменение высоты h (в силу малой плотности вещества или малого изменения этой высоты), то в соответствии с уравнением неразрывности скорость в узких участках трубы растет, - значит, там должно падать давление. Это естественный результат, поскольку рост скорости (ускорения) может быть обеспечен только за счет перепада давления и в том месте, где скорость большая, давление должно быть мало.

Уравнение Бернулли просто объясняет множество явлений рассматриваемых в курсе “теория судна”. Например, крыло, которое обтекает равномерный поток воды даже при отсутствии угла атаки, имеет подъемную силу. На суда идущими параллельным курсом слишком близко один к другому, действует гидродинамическая сила, толкающая их друг к другу. Большие скорости потока жидкости, создающиеся при быстром вращении судового винта, приводят к появлению кавитации, способной разрушить его лопасти. Принцип работы судового лага, основан также на уравнении Бернулли, позволяющий измерить скорость движения жидкости.







Дата добавления: 2015-10-12; просмотров: 430. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия