Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

И аналитической геометрии





МАТЕМАТИКА

КОНТРОЛЬНЫЕ ЗАДАНИЯ

Для студентов-заочников

Зцм 15-01.02.03


КОНТРОЛЬНЫЕ ЗАДАНИЯ

Ниже приведены таблицы номеров задач, входящих в задания на контрольные работы, по учебным планам. Студент должен выполнять контрольные задания по варианту, номер которого совпадает с последней цифрой его номера студенческого билета (шифр).

.

Студенты групп ЗЦМ (прием 2015) изучающие высшую математику 2 семестра, выполняют:

Контрольные работы № 1, № 2 (1 семестр).

Контрольные работы № 3, № 4 (2 семестр).

 

Вариант Контрольная работа №1
           
           
           
           
           
           
           
           
           
           

 

  Вариант Контрольная работа №2
             
             
             
             
             
             
             
             
             
             
                 

 


 

Вариант Контрольная работа №3
           
           
           
           
           
           
           
           
           
           

 

 

Вариант Контрольная работа №4
     
     
     
     
     
     
     
     
     
     

 

 


Элементы векторной алгебры

и аналитической геометрии

 

1 – 10. Даны векторы (а 1; а 2; а 3), (b 1; b 2; b 3), (c 1; c 2; c 3) и (d 1; d 2; d 3) в некотором базисе. Показать, что векторы образуют базис и найти координаты вектора d в этом базисе.

1. (2; 1; 3), (3; –2; –1), (4; 1; 2), (9; 0; 4).
2. (3; 1; 4), (2; 1; –2), (–1; 5; –7), (7; 2; 2).
3. (4; 2; 1), (–1; 3; 2), (3; –1; 1), (12; 0; 1).
4. (1; 2; 3), (2; 3; 5), (–1; 3; –2), (2; –1; 5).
5. (5; 7; 1), (–2; 1; –4), (3; 2; 1), (8; 1; 6).
6. (2; 1; 3), (–5; 3; –2), (4; 2; 1), (17; 2; 10).
7. (4; 1; 5), (3; –5; 1), (1; 2; –3), (6; 5; –1).
8. (1; 3; 4), (–2; 1; 3), (2; –7; 0), (3; 3; 15).
9. (6; 1; 3), (2; 3; –1), (–1; 2; –2), (8; 8; –3).
10. (6; 3; 1), (–1; 3; 4), (2; –1; 9), (–2; –10; 0).

 

11 – 20. Даны координаты вершин пирамиды А 1 А 2 А 3 А 4. Найти:
1) длину ребра А 1 А 2; 2) угол между ребрами А 1 А 2 и А 1 А 4; 3) угол между ребром А 1 А 4 и гранью А 1 А 2 А 3; 4) площадь грани А 1 А 2 А 3; 5) объем пирамиды; 6) уравнение прямой А 1 А 2; 7) уравнение плоскости А 1 А 2 А 3; 8) уравнение высоты, опущенной из вершины А 4 на грань А 1 А 2 А 3. Сделать чертеж.

11. А 1 (2; 1; –4), А 2(1; –2; 3), А 3(1; –2; –3), А 4(5; –2; 1).

12. А 1 (2; –1; 3), А 2 (–5; 1; 1), А 3(0; 3; –4), А 4(–1; –3; 4).

13. А 1 (5; 3; 6), А 2 (–3; –4; 4), А 3(5; –6;8), А 4(4; 0; –3).

14. А 1 (5; 2; 4), А 2(–3; 5; –7), А 3(1; –5; 8), А 4(9; –3; 5).

15. А 1 (7; –1; –2), А 2(1; 7; 8), А 3(3; 7; 9), А 4(–3; –5; 2).

16. А 1 (–2; 3; 4), А 2(4; 2; –1), А 3(2; –1; 4), А 4(–1; –1; 1).

17. А 1 (0; 4; –4), А 2(5; 1; –1), А 3(–1; –1; 3), А 4(0; –3; 7).

18. А 1 (0; –6; 3), А 2(3; 3; –3), А 3(–3; –5; 2), А 4(–1; –4; 0).

19. А 1 (2; –1; 3), А 2(–5; 1; 1), А 3(0; 3; –4), А 4(–1; –3; 4).

20. А 1 (2; 1; –4), А 2(1; –2; 3), А 3(1; –2; –3), А 4(5; –2; 1).

21. Даны вершины треугольника: А (1; –1), В (–2; 1), С (3; 5). Составить уравнение перпендикуляра, опущенного из вершины А на медиану, проведенную из вершины В.

22. Даны вершины треугольника: А (2; 1), В (–1; –1), С (3; 2). Составить уравнения его высот.

23. Составить уравнения сторон и медиан треугольника с вершинами А (3; 2), В (5; –2), С (1; 0).

24. Даны вершины треугольника: А (1; 4), В (3; –9), С (–5; 2). Определить длину его медианы, проведенной из вершины В.

25. Даны три вершины А (2; 3), В (4; –1), С (0; 5) параллелограмма АВСD. Найти его четвертую вершину D, противоположную вершине В.

26. Даны вершины четырехугольника: А (–2; 14), В (4; –2), С (6; –2), D (6; 10). Определить точку пересечения его диагоналей АС и ВD.

27. Даны уравнения двух сторон параллелограмма 8 х + 3 у + 1 = 0, 2 х + у – 1 = 0 и уравнение одной из его диагоналей 3 х + 2 у + 3 = 0. Определить координаты вершины этого параллелограмма т.р. (–5, 13).

28. Найти точку Q, симметричную относительно прямой
2 х – 3 у – 3 = 0.

29. Даны уравнения двух сторон параллелограмма х – 2 у = 0,

ху – 1 = 0 и точка пересечения его диагоналей М (3; –1). Найти уравнения двух других сторон параллелограмма.

30. Даны уравнения двух сторон прямоугольника 5 х + 2 у –7= 0,

5 х + 2 у – 36 = 0 и уравнение его диагонали 3 х + 7 у – 10 = 0. Составить уравнения остальных сторон этого прямоугольника.

 

31 – 40. Привести уравнение кривой второго порядка к каноническому виду, построить график кривой.

31. x 2 + у 2 – 4 x + 2 у = 4; 32. x 2 у 2 – 4 у – 13 = 0;

33. x 2 – 4 x + 2 у + 2= 0; 34. x 2 + 4 x + 4 у 2 + 8у – 5 = 0;

35. x 2 – 6 у 2 – 12 x + 36 у – 54 = 0; 36. 2 x 2 + 4 x + 18 у 2 – 16= 0;

37. 2 x 2 + 2 у 2+ 4 x – 8 у – 8 = 0; 38. – x + у 2 + 2 у = 0;

39. 3 x 2 + 5 у 2 + 12 x – 10 у + 2 = 0; 40. 4 x 2 – 3 у 2 – 8 x – 6 у – 11 = 0.

 

41 – 50. Линия задана уравнением r = r (j) в полярной системе координат. Требуется: 1) построить линию по точкам начиная от j=0 до j=2p и придавая j значения через промежутки p/8; 2) по рисунку определить тип линии.

41. 42.
43. 44.
45. 46.
47. 48.
49. 50.

 







Дата добавления: 2015-10-15; просмотров: 366. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия