Пример. а) Перевести 1101111001,1101(2) в восьмеричную систему счисления 001 101
а) Перевести 1101111001,1101(2) в восьмеричную систему счисления
б) Перевести 11111111011,100111(2) в шестнадцатеричную систему счисления
Перевод из восьмеричной в шестнадцатеричную систему и обратно удобно осуществлять через двоичную систему с помощью триад и тетрад. Пример. Перевести 175,24(8) в шестнадцатеричную систему счисления
Двоичная арифметика Правила выполнения арифметических действий над двоичными числами такие же, как и в десятичной системе, и задаются таблицами двоичного сложения, вычитания и умножения (таблица 2). Подобные таблицы для восьмеричной и шестнадцатеричной систем счисления приведены в Приложении. Таблица 2 - Арифметические действия над двоичными числами
При сложении двоичных чисел производится сложение цифр слагаемых в каждом разряде и единиц переноса из соседнего младшего разряда, если они имеются. При этом необходимо учитывать, что в двоичной системе переполнение разряда наступает при количестве единиц, больше либо равным двум. В случае переполнения нужно вычесть из текущего разряда число, равное основанию системы (в данном случае – два), и добавить единицу переноса в следующий старший разряд. Прежде чем рассматривать приведенные ниже примеры, полезно попробовать получить для различных систем счисления порядковые последовательности путём прибавления единицы к предыдущему числу, начиная с нуля, а затем сравнить их с соответствующими столбцами таблицы 1. Затем попробуйте получить последовательности путём вычитания в обратном порядке.
|