Основы алгебры логики
Слово «логика» означает как совокупность правил, которым подчиняется процесс мышления, так и науку о правилах рассуждений. Логика, как наука о законах и формах мышления, изучает абстрактное мышление как средство познания объективного мира. Основными формами абстрактного мышления являются: — ПОНЯТИЯ, — СУЖДЕНИЯ, — УМОЗАКЛЮЧЕНИЯ. ПОНЯТИЕ — форма мышления, в которой отражаются существенные признаки отдельного предмета или класса однородных предметов, например: «портфель»; «трапеция»; «ветер». СУЖДЕНИЕ — мысль, в которой что-либо утверждается или отрицается о предметах. Суждения являются истинными или ложными повествовательными предложениями. Они могут быть простыми и сложными. Например: «Весна наступила»; «Грачи прилетели»; «Весна наступила, и грачи прилетели». УМОЗАКЛЮЧЕНИЕ — прием мышления, посредством которого из исходного знания получается новое знание; из одного или нескольких истинных суждений, называемых посылками, мы по определенным правилам вывода получаем заключение. Все металлы — простые вещества. Литий — металл. Литий — простое вещество.
Чтобы достичь истины при помощи умозаключений, надо соблюдать законы логики. Существует формальная и математическая логика. Формальная логика — наука о законах и формах мышления. Математическая логика изучает логические связи и отношения, лежащие в основе дедуктивного (логического) вывода. Формальная логика связана с анализом наших обычных содержательных умозаключений, выражаемых разговорным языком. Математическая логика изучает только умозаключения со строго определенными объектами и суждениями, для которых можно однозначно решить, истинны они или ложны. В основе логических схем и устройств ЭВМ лежит специальный аппарат, использующий законы математической логики. Математическая логика изучает вопросы применения математических методов для решения логических задач и построения логических схем. Знание логики необходимо при разработке алгоритмов и программ, так как в большинстве языков программирования есть логические операции. Алгебра логики — это раздел математической логики, значения всех элементов (функций и аргументов) которой определены в двухэлементном множестве: «Истина» («True») и «Ложь» («False»), или 1 и 0. В математической логике суждения называются высказываниями. Алгебру логики иначе называют алгеброй высказываний. Высказывание — это повествовательное предложение, о котором можно сказать, истинно оно или ложно. Примеры высказываний: Сейчас идет снег. может быть истинным или ложным Земля — планета Солнечной системы. истинно 2 + 8 < 5 ложно 5 * 5 = 25 истинно Всякий квадрат есть параллелограмм. истинно Всякий параллелограмм есть квадрат. ложно 2 * 2 = 5 ложно
А вот примеры, не являющиеся высказываниями: «Уходя, гасите свет!»; «Да здравствует мыло душистое и полотенце пушистое!» Высказывания, приведенные выше, являются простыми. Сложные высказывания получаются путем объединения простых высказываний связками — союзами И, ИЛИ и частицей НЕ. Значение истинности сложных высказываний зависит от истинности входящих в них простых высказываний и от объединяющих их связок. Операции сравнения Операции сравнения называют еще операциями отношения (relation operations), поскольку в них осуществляется оценка взаимосвязи (отношений) двух операндов. Под операндом понимается то, над чем выполняется операция. В таблице 6 перечислены операторы, используемые для обозначения операций сравнения в языках программирования. Результат сравнения может быть либо истинным, либо ложным (Тruе или False). Приоритет операций сравнения ниже, чем у арифметических операций. Таблица 6 – Примеры операторов сравнения в разных языках программирования
|