Представление логических функций математическими выражениями
Наиболее распространенным способом задания логических функций является табличная форма. Таблицы истинности позволяют полно и однозначно установить все существующие логические связи. При табличном представлении логических функций их записывают в одной из канонических форм: совершенной дизъюнктивной нормальной форме (СДНФ) или совершенной конъюнктивной нормальной форме (СКНФ). Математическое выражение логической функции в СДНФ получают из таблицы истинности следующим образом: для каждого набора аргументов, на котором функция равна 1, записывают элементарные произведения переменных, причем переменные, значения которых равны нулю, записывают с инверсией. Полученные произведения, называемые конституентами единицы или минтермами, суммируют. Запишем логическую функцию у трех переменных а, b и c, представленной в виде табл. 3, в СДНФ:
При этом для каждого набора аргументов таблицы истинности, на котором функция у равна 0, составляют элементарную сумму, причем переменные, значение которых равно 1, записывают с отрицанием. Полученные суммы, называемые конституентами нуля или макстермами, объединяют операцией логического умножения. Для функции (табл. 3) СКНФ
|