Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИМЕР 2. Сочетание двух нелинейных зависимостей, каждая из





Исходные данные: F = 100, р = 50, с = 40, h = 0,5. Соответственно имеем

Получим Qk = 3,5.

Сочетание двух нелинейных зависимостей, каждая из которых не имеет точки максимума, показано на рис. 3.4.Предполагается, что удельные затраты и цены сокращаются по мере роста выпуска продукции.

Например, если обе функции являются степенными:

V = pQm, S = F + cQh, m < 1, h < 1,

то искомый барьерный уровень находим на основе выражения

Пусть теперь обе функции являются параболами второй степени (рис. 3.5):

V = aQ 2 + bQ, S = cQ 2 + dQ + F,

где a, b, с, d — параметры парабол.

Прибыль в зависимости от уровня выпуска составит:

P = (a - c) Q 2 + (b - d) Q - F, (3.6)

а барьерный объем выпуска находится из уравнения

Добавим, что в рассмотренных условиях можно рассчитать объем выпуска, максимизирующего размер прибыли (обозначим его как Qm). Для этого, как известно, достаточно найти производную функции прибыли и приравнять ее нулю. В случае, когда прибыль описывается выражением (3.6), находим

 

Как видим, положение точки максимума полностью определяется параметрами соответствующих парабол. Причем необходимым условием существования максимума являются следующие соотношения: d > b; a > с. Если b > d и а > с, то прибыль монотонно растет вместе с увеличением выпуска.

Нелинейную модель можно представить и в неформализованном виде — как таблицу данных, характеризующих затраты и стоимость продукции в зависимости от размера выпуска.







Дата добавления: 2015-10-15; просмотров: 282. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия