Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИМЕР 2. Вернемся к данным примера 1 и определим структуру портфеля с минимальной дисперсией





Вернемся к данным примера 1 и определим структуру портфеля с минимальной дисперсией. Напомним, что = 0,8; = 1,1.

При полной положительной корреляции расчетные значения доли первой бумаги составят по формуле (4.15)

.

Соответственно ау < 0. Следовательно, минимальная дисперсия имеет место в случае, когда портфель состоит из одной бумаги вида X. Средний доход от портфеля равен 2.

При полной отрицательной корреляции находим

аx = = 0,579;

ay = 1 - 0,579 = 0,421.

Дисперсия в этом случае равна нулю (рис. 4.4), а средний доход составит 2,421.

При отсутствии корреляции получим по формуле (4.12)

ах = 0,654; ау = 1 - 0,654 = 0,346.

Дисперсия дохода при такой структуре портфеля равна 0,418, а средний доход — 2,346.

Пусть теперь портфель состоит из трех видов бумаг — X, Y, Z. Их доли ах, ау и az = 1 - (ax + ay).Дисперсия дохода от портфеля при условии независимости доходов от отдельных видов бумаг составит:

Минимум дисперсии достигается, если структура портфеля определяется следующим образом:

Не будем останавливаться на ситуации, когда доходы трех видов бумаг статистически зависимы. Перейдем к общей постановке задачи и определим структуру портфеля с n составляющими. Положим, что доходы статистически независимы. Опустим доказательства (см. § 4.4) и приведем результат в матричном виде:

A = D -1 e, (4-17)

где e — единичный вектор, характеризующий структуру портфеля.

где А — вектор, характеризующий (п - 1) элементов структуры портфеля.

Матрица D имеет размерность (n - 1) х (п - 1).







Дата добавления: 2015-10-15; просмотров: 386. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия