ПРИМЕР 2. Проект предполагается реализовать за 3 года
Проект предполагается реализовать за 3 года. Планируются следующие размеры и сроки инвестиций: в начале первого года единовременные затраты — 500, во втором — только равномерные расходы, их общая сумма — 1000, в конце третьего года единовременные затраты — 300. Отдачу планируют получать 15 лет: в первые 3 года — по 200, далее в течение 10 лет ежегодно — по 600, в оставшиеся 3 года — по 300. Доходы поступают равномерно в пределах годовых интервалов. Пусть ставка приведения равна 10%, тогда современная стоимость капиталовложений составит: Ktvt = 500 + 1000 х 1,1-1,5 + 300 х 1,1-3 = 1592,2. В свою очередь, современная стоимость поступлений равна 200 а 3;10 х 1,1-2,5 + 600 а 10;10 х 1,1-5,5 + 300 а 2;10 х 1,1-15,5 = 2693,4. Отсюда N = 1101,2, т. е. капиталовложения окупаются. Несколько изменим условия примера. Допустим, капиталовложения в первом году составляют не 500, а 1700. Тогда N -100. Таким образом, капиталовложения при заданной процентной ставке не окупаются, несмотря на то что их общая сумма (3 000) существенно меньше общей суммы поступлений (7 500). Для того чтобы содержание показателя N было более наглядным, приведем следующую иллюстрацию. Имеется инвестиционный проект. Его условия: единовременные капиталовложения в сумме 12, доход поступает 6 лет в равных размерах — по 4 в конце каждого года. Для дисконтирования применена ставка 10%. По формуле (5.10) получим N = 5,42. Теперь представим, что инвестиции полностью осуществлены за счет привлеченных средств. Весь период осуществления можно условно разбить на два интервала. В первом весь доход используется на покрытие задолженности до полного ее погашения. Во втором доход идет в пользу инвестора. Поток платежей, выплат процентов и суммы погашения задолженности, а также величины поступления чистого дохода инвестору пока-заны в табл. 5.2 (данные на конец каждого года). Таблица 5.2
В конце первого года часть доходов (в сумме 1,2) идет на уплату процентов, остальное используется для погашения основного долга. В конце третьего года задолженность после всех выплат по обслуживанию долга равна 2,732. Она погашается в конце следующего года. Оставшаяся в этом году неизрасходованной сумма (с учетом выплаты процентов) и поступления в следующих годах представляют собой чистый инвестиционный доход: 4 - (2,732 + 0,273) = 0,995. Современная величина доходов, поступающих в четвертом и следующих периодах, составит: 0,995 х 1,1-4 + 4 х 1,1-5 + 4 х 1,1-6 = 5,42. Именно такая величина была получена для данных условий по формуле (5.10). Во всех рассмотренных случаях предполагалось, что ставка приведения не изменяется во времени. Однако нельзя исключать ситуации, когда, например, в связи с ожиданием увеличения риска неполучения дохода можно применить возрастающую во времени процентную ставку. Общая методика расчета при этом не изменится. Методы расчетов (непрерывный поток платежей). Обсудим теперь методики, применяемые в случаях, когда потоки платежей и процентные ставки являются непрерывными. Такие потоки в некоторых ситуациях более адекватны реальному положению дел. Сказанное относится к потокам как затрат, так и доходов. Остановимся на следующих видах потоков: постоянном, линейно изменяющемся во времени, с экспоненциальным ростом. Учесть фактор непрерывности постоянного потока платежей можно двояким путем. Во-первых, путем переноса момента платежа на середину интервала, а во-вторых, с помощью коэффициентов приведения и наращения непрерывной переменной ренты (доказательства последних приведены в § 5.5). Оба подхода дают практически одинаковые результаты для постоянного и линейно изменяющегося потоков.
|