Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Vii) Модель «Витрати-випуск» В. В. Леонтьєва





Розглянемо одну із класичних задач дослідження операцій – закриту і стійку модель.

Будемо вважати, що об’єкт економічної діяльності випускає найменувань продукції . Крім того

,

де – вектор внутрішнього споживання продукції об’єктом;

– вектор кінцевої продукції (продукція, яка йде на продаж, запаси тощо).

Припустимо, що , де – невід’ємна матриця елементів, які є коефіцієнтами прямих витрат при виробництві продукції. Тоді

()

У деталізованому вигляді матричне рівняння () має вигляд:

()

де – кількість продукції -го виду, потрібної для виробництва одиниці продукції -го виду;

– компоненти вектора кінцевого випуску;

– кількість валового продукту відповідного виду.


Якщо технічні коефіцієнти задані наперед, тоді за умови, коли відомо компоненти вектора кінцевого випуску , модель () дозволяє, визначити:

1. виробничу матрицю , де – одинична матриця;

2. матрицю повних витрат ;

3. матрицю непрямих витрат ;

4. вектор валового випуску кожної галузі ;

5. виробничу програму кожної галузі ;

6. виробничу собівартість кожного виду продукції за формулою , де – алгебраїчні доповнення елементів матриці .

 


k) Форми запису задачі лінійного програмування (ЗЛП)

Усі розглянуті вище задачі, – це задачі на знаходження мінімуму чи максимуму за певних умов. У кожному конкретному випадку умови мали вигляд або нерівностей або рівнянь або одночасно одни і других, а також, як правило, на всі змінні задачі накладались умови невід’ємності, що випливає із природи розглядуваних явищ. Розглянуті задачі мають різний економічний зміст але наділені спільними рисами. Зокрема, у кожній такій задачі потрібно знайти екстремум функції

(1.8)

за обмежень

(1.9)

та умов невід’ємності

, (1.10)

Необхідно знайти такий розв’язок системи , при якому лінійна функція прийме оптимальне (максимальна чи мінімальне) значення.








Дата добавления: 2014-12-06; просмотров: 902. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия