Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Приклад 2.1





Розв’язати графічно ЗЛП:

(2.1)

при обмеженнях:

(2.2)

і умовах невід’ємності:

(2.3)

Приведемо в однорідну форму задачу (2.1) –(2.3). Випишемо матрицю коефіцієнтів та за допомогою елементарних перетворень утворимо одиничну підматрицю (віднімемо від першого рядка третій):

~

Отримаємо еквівалентну систему до системи (2.2)

()

Очевидно, що одиничну підматрицю утворюють коефіцієнти при змінних . Отже, – базисні змінні, – вільні. Виразимо базисні змінні через вільні:

Використовуючи ці залежності виключимо базисні змінні з функціоналу, підставивши їх у вираз функціоналу:

,

тобто

Після відкидання базисних змінних в системі обмежень отримаємо наступну ЗЛП:

()

()

()

Для графічного розв’язування задачі () – () необхідно

Побудуємо область допустимих розв’язків (ОДР) системи ()

(рис. 2.1).

 
 

 


Досліджуючи будь-яку точку (як правило початок координат) з двох півплощин вибирають ту, в якій нерівність має місце. ОДР вибирають як загальну частину (перетин) всіх півплощин, що відповідають обмеженням та умовам невід’ємності.

Напрямок зростання цільової функції вказує її вектор-градієнт:

Для даної задачі . Отже .

Будуємо вектор і пряму, яка відповідає цільовій функції (вона перпендикулярна до вектора . Знаходимо опорну (оптимальну) точку в ОДР, врахувавши, що лінії рівня (прямі), на яких цільова функція постійна, перпендикулярна градієнту і при переміщенні лінії рівня паралельно самій собі в напрямку градієнта рівень (тобто значення F) збільшується.

Оптимальна точка , тобто .

Оптимальне значення цільової функції для задачі () – ():

Повернувшись до задачі (2.1) – (2.3), отримаємо значення базисних змінних:

Отже оптимальна точка задачі (2.1) – (2.3): .

Оптимальне значення цільової функції задачі (2.1) – (2.3):

Висновок: задачу(2.1) – (2.3) можна звести до задачі () – () і розв’язати графічно.

 








Дата добавления: 2014-12-06; просмотров: 689. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия