Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нормальный закон распределения.





Среди случайных величин особое место занимают нормальные случайные величины, подчиняются так называемому нормальному закону распределения:

(2.23)

Определим 1-й начальный момент нормальной случайной величины ξ;:

Сделав замену , получим

так как первый из интегралов равен нулю в силу нечетности подынтегральной функции, а

Итак, a=m1(ξ).

Определим теперь 2-й центральный момент нормальной случайной величины ξ;:

так как

Таким образом, величины a и σ 2, полностью определяющие нормальный закон распределения, представляют собой соответственно среднее значение и дисперсию случайной величины ξ;, т.е. нормальный закон распределения плотности определяется, если известны первые два момента. Из формулы (2.23) видно, что нормальное распределение симметрично относительно среднего значения случайной величины a. Максимум плотности вероятности, соответствующий x=a, равен

На рис 2.1 приведен вид нормального закона для различных σ при а=0.

Рис. 2.1

Нормальный закон распределения занимает особое положение в силу того, что большинство реальных случайных величин имеет распределение, близкое к нормальному. Последнее обстоятельство связано с тем, что на практике случайные величины обычно являются результатом совокупного действия многих независимых случайных факторов и, при некоторых условиях, по мере увеличения числа этих факторов закон распределения асимптотически приближается к нормальному. Условия эти определяются центральной предельной теоремой теории вероятности, которая в упрощенном виде может быть сформулирована следующим образом: если независимые случайные величины ξ 1, ξ 2, …, ξ n имеют одинаковые распределения с конечной, отличной от нуля дисперсией σ 2, то при n→ ∞ сумма этих величин стремится к нормальному распределению со средним значением и дисперсией .

А. М. Ляпунов показал, что тенденция к нормализации случайных величин имеет место и при более общих предположениях.

Рис. 2.2

Решение многих практических задач не столь критично к точности аппроксимации закона распределения и уже в случае, когда случайная величина определяется несколькими примерно равноценными независимыми факторами, закон ее распределения можно приближенно аппроксимировать нормальным законом.

Интегральный закон распределения, соответствующий нормальному закону (2.23), имеет вид:

(2.24)

Если перейти к нормированным отклонениям , то получим

(2.25)

Функция , представляющая собой вероятность того, что нормированное случайное отклонение не превзойдет величину z, называется интегралом вероятности. Вид этой функции приведен на рис. 2.2.

Поскольку

то F(-z)=1-F(z) и функцию F(z) достаточно определить в положительной области.

Вероятность того, что нормальная случайная величина ξ не выйдет за пределы интервала [x1, x2]

(2.26)

 

 







Дата добавления: 2014-12-06; просмотров: 683. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия