Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нормальный закон распределения.





Среди случайных величин особое место занимают нормальные случайные величины, подчиняются так называемому нормальному закону распределения:

(2.23)

Определим 1-й начальный момент нормальной случайной величины ξ;:

Сделав замену , получим

так как первый из интегралов равен нулю в силу нечетности подынтегральной функции, а

Итак, a=m1(ξ).

Определим теперь 2-й центральный момент нормальной случайной величины ξ;:

так как

Таким образом, величины a и σ 2, полностью определяющие нормальный закон распределения, представляют собой соответственно среднее значение и дисперсию случайной величины ξ;, т.е. нормальный закон распределения плотности определяется, если известны первые два момента. Из формулы (2.23) видно, что нормальное распределение симметрично относительно среднего значения случайной величины a. Максимум плотности вероятности, соответствующий x=a, равен

На рис 2.1 приведен вид нормального закона для различных σ при а=0.

Рис. 2.1

Нормальный закон распределения занимает особое положение в силу того, что большинство реальных случайных величин имеет распределение, близкое к нормальному. Последнее обстоятельство связано с тем, что на практике случайные величины обычно являются результатом совокупного действия многих независимых случайных факторов и, при некоторых условиях, по мере увеличения числа этих факторов закон распределения асимптотически приближается к нормальному. Условия эти определяются центральной предельной теоремой теории вероятности, которая в упрощенном виде может быть сформулирована следующим образом: если независимые случайные величины ξ 1, ξ 2, …, ξ n имеют одинаковые распределения с конечной, отличной от нуля дисперсией σ 2, то при n→ ∞ сумма этих величин стремится к нормальному распределению со средним значением и дисперсией .

А. М. Ляпунов показал, что тенденция к нормализации случайных величин имеет место и при более общих предположениях.

Рис. 2.2

Решение многих практических задач не столь критично к точности аппроксимации закона распределения и уже в случае, когда случайная величина определяется несколькими примерно равноценными независимыми факторами, закон ее распределения можно приближенно аппроксимировать нормальным законом.

Интегральный закон распределения, соответствующий нормальному закону (2.23), имеет вид:

(2.24)

Если перейти к нормированным отклонениям , то получим

(2.25)

Функция , представляющая собой вероятность того, что нормированное случайное отклонение не превзойдет величину z, называется интегралом вероятности. Вид этой функции приведен на рис. 2.2.

Поскольку

то F(-z)=1-F(z) и функцию F(z) достаточно определить в положительной области.

Вероятность того, что нормальная случайная величина ξ не выйдет за пределы интервала [x1, x2]

(2.26)

 

 







Дата добавления: 2014-12-06; просмотров: 683. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия