Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства счетных множеств





Покажем, что класс счетных множеств расположен в ряду мощностей левее любых других классов бесконечных множеств, а предшествуют ему только классы конечных множеств (рис. 1.25).

 

 
 

 


 

Основой для такого утверждения служат следующие теоремы о счетных множествах.

Теорема 1. Любое подмножество счетного множества конечно или счетно.

Пусть X – счетное множество, а – произвольное его подмножество. Занумеруем элементы множества и выберем тот элемент, который имеет минимальный номер и принадлежит подмножеству Y, – обозначим его . Затем рассмотрим множество и найдем в нем элемент с минимальным номером, принадлежащий Y, - обозначим , и т.д. Если на n -ом шаге мы не обнаружим в множестве элементов множества Y, то Y конечно и ½ Y ½ = n. В противном случае (если процесс будет продолжаться бесконечно) множество Y счетное, т.к. указан способ нумерации его элементов.

Теорема 2. Всякое бесконечное множество имеет счетное подмножество.

Пусть X – бесконечное множество. Выберем произвольный элемент . Так как X бесконечно, то Æ. Обозначим произвольный элемент из . Далее найдется . Поскольку X бесконечно, этот процесс не может оборваться из-за “нехватки” элементов, и мы получим счетное подмножество Y множества X: .

Теорема 3. Объединение конечного или счетного количества счетных множеств есть множество счетное.

Пусть , где - счетные множества. Будем считать, что они попарно не пересекаются (в противном случае перейдем от множеств к множествам , которые попарно не пересекаются и ). Все элементы множества X запишем в виде бесконечной матрицы:

,

где в первой строке записаны элементы множества , во второй – и т.д. Занумеруем эти элементы “по диагонали”(как в примере 2 из 1.4.5), при этом устанавливается биекция между множествами X и N, т.е. X – счетное множество.

Теорема 4. Пусть X бесконечное множество, а Y – счетное. Тогда .

Теорема утверждает, что добавление счетного множества элементов не увеличивает мощность бесконечного множества.

Доказательство. Рассмотрим множество и представим его в виде объединения непересекающихся множеств где . Так как Y счетно, то конечно или счетно (по теореме 1). Множество X бесконечно, значит, существует счетное подмножество (по теореме 2). Тогда , а

.

По теореме 3 счетно, т.е . Поэтому . Теорема доказана.

В примере 1 из 1.4.5 мы установили, что множество N равномощно своему собственному подмножеству. Рассуждения, близкие к доказательству теоремы 4, позволяют утверждать, что таким свойством обладает не только множество N, но любые бесконечные множества.

Рассмотренные четыре теоремы показывают, что среди бесконечных множеств счетные множества являются наименьшими по мощности. Существуют ли множества более чем счетные?







Дата добавления: 2014-12-06; просмотров: 924. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия