Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства счетных множеств





Покажем, что класс счетных множеств расположен в ряду мощностей левее любых других классов бесконечных множеств, а предшествуют ему только классы конечных множеств (рис. 1.25).

 

 
 

 


 

Основой для такого утверждения служат следующие теоремы о счетных множествах.

Теорема 1. Любое подмножество счетного множества конечно или счетно.

Пусть X – счетное множество, а – произвольное его подмножество. Занумеруем элементы множества и выберем тот элемент, который имеет минимальный номер и принадлежит подмножеству Y, – обозначим его . Затем рассмотрим множество и найдем в нем элемент с минимальным номером, принадлежащий Y, - обозначим , и т.д. Если на n -ом шаге мы не обнаружим в множестве элементов множества Y, то Y конечно и ½ Y ½ = n. В противном случае (если процесс будет продолжаться бесконечно) множество Y счетное, т.к. указан способ нумерации его элементов.

Теорема 2. Всякое бесконечное множество имеет счетное подмножество.

Пусть X – бесконечное множество. Выберем произвольный элемент . Так как X бесконечно, то Æ. Обозначим произвольный элемент из . Далее найдется . Поскольку X бесконечно, этот процесс не может оборваться из-за “нехватки” элементов, и мы получим счетное подмножество Y множества X: .

Теорема 3. Объединение конечного или счетного количества счетных множеств есть множество счетное.

Пусть , где - счетные множества. Будем считать, что они попарно не пересекаются (в противном случае перейдем от множеств к множествам , которые попарно не пересекаются и ). Все элементы множества X запишем в виде бесконечной матрицы:

,

где в первой строке записаны элементы множества , во второй – и т.д. Занумеруем эти элементы “по диагонали”(как в примере 2 из 1.4.5), при этом устанавливается биекция между множествами X и N, т.е. X – счетное множество.

Теорема 4. Пусть X бесконечное множество, а Y – счетное. Тогда .

Теорема утверждает, что добавление счетного множества элементов не увеличивает мощность бесконечного множества.

Доказательство. Рассмотрим множество и представим его в виде объединения непересекающихся множеств где . Так как Y счетно, то конечно или счетно (по теореме 1). Множество X бесконечно, значит, существует счетное подмножество (по теореме 2). Тогда , а

.

По теореме 3 счетно, т.е . Поэтому . Теорема доказана.

В примере 1 из 1.4.5 мы установили, что множество N равномощно своему собственному подмножеству. Рассуждения, близкие к доказательству теоремы 4, позволяют утверждать, что таким свойством обладает не только множество N, но любые бесконечные множества.

Рассмотренные четыре теоремы показывают, что среди бесконечных множеств счетные множества являются наименьшими по мощности. Существуют ли множества более чем счетные?







Дата добавления: 2014-12-06; просмотров: 924. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия