Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение счетного множества





 

Будем говорить, что множество X счетно, если оно равномощно множеству натуральных чисел N.

Пример 1. Пусть X множество нечетных натуральных чисел. Покажем, что X счетно. Для этого нужно установить биекцию множества X на множество натуральных чисел, т.е. занумеровать элементы множества X так, чтобы каждому элементу X соответствовал ровно один номер, а любому натуральному числу соответствовал ровно один элемент из X. Очевидно, соответствие N, удовлетворяет этим требованиям:

 

 

Таким образом, ½ X ½ =½ N ½ и X счетно.

Пример 2. Пусть X= N´ N – декартово произведение множества N на себя. Покажем, что X счетно. Расположим все элементы X в виде матрицы (рис. 1.24) и занумеруем его элементы “ по диагоналям ”: номер 1 присвоим элементу (1, 1), номер 2 – элементу (2, 1), 3 – (1, 3) и т.д.

 

 
 

 


Полученное отображение X на N также является биекцией (хотя записать формулу в явном виде сложнее, чем в примере 1).

Мощность счетного множества обозначается À 0. Когда мы пишем ½ X ½ =À 0, мы утверждаем, что множество X счетно, т.е. относится к тому же классу эквивалентности, что и множество натуральных чисел. А множество N считается эталоном (образцом) счетных множеств.

 







Дата добавления: 2014-12-06; просмотров: 695. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия