Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Несчетные множества





 

Рассмотрим множество R. Сравним его с множеством N. Очевидно, что ½ N ½. Действительно, отрезок [0; 1] содержит счетное подмножество , значит, является не менее, чем счетным. Покажем, что [0; 1] и N не являются равномощными множествами, т.е. что .

Теорема. Множество точек отрезка [0; 1] не является счетным.

Проведем доказательство методом “от противного”. Предположим, что множество [0; 1] счетно, т.е. существует биекция N на [0; 1], и каждому элементу отрезка можно присвоить номер: N }. Каждый элемент отрезка [0; 1] представляется в виде бесконечной десятичной дроби , где j -я десятичная цифра i -го элемента. Запишем все элементы N, в порядке возрастания номеров. Покажем, что найдется элемент b, принадлежащий отрезку [0; 1], но не совпадающий ни с одним из занумерованных элементов N. Метод построения такого элемента называется диагональной процедурой Кантора и заключается в следующем. Будем строить элемент b в виде бесконечной десятичной дроби , где i -я десятичная цифра. В качестве возьмем любую цифру, не совпадающую с , – любую цифру, не совпадающую с , и т.д., при любых N (рис. 1.26). Построенный таким образом элемент b принадлежит отрезку[0; 1], но отличается от каждого из занумерованных элементов хотя бы одной цифрой. Следовательно, предположение о том, что существует биекция N ® [0; 1]ошибочно, и множество [0; 1] не является счетным.

Рис. 1.26. Диагональная процедура Кантора

 

Итак, мы показали, что ½ [0; 1]½ > ½ N ½, т.е. класс эквивалентности, которому принадлежит отрезок [0; 1], расположен правее класса À 0 счетных множеств в ряду мощностей (рис. 1.25). Обозначим этот класс À (без индекса). Множества, принадлежащие этому классу, называются несчетными или множествами мощности континуум (континуум – непрерывный). Этому классу принадлежат и интервал (0; 1), и множество R действительных чисел, и множество точек круга на плоскости.

Пример. Множество R имеет мощность континуума, т.к. равномощно отрезку [0; 1]. Действительно, по теореме Кантора-Бернштейна (см. 1.4.3) ½ [0; 1]½ = ½ (0; 1)½. Биекцию интервала (0; 1)на множество R можно задать с помощью сложной функции , где имеет вид и отображает интервал (0; 1)на интервал , а отображает интервал на R по закону .







Дата добавления: 2014-12-06; просмотров: 1026. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия