Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Несчетные множества





 

Рассмотрим множество R. Сравним его с множеством N. Очевидно, что ½ N ½. Действительно, отрезок [0; 1] содержит счетное подмножество , значит, является не менее, чем счетным. Покажем, что [0; 1] и N не являются равномощными множествами, т.е. что .

Теорема. Множество точек отрезка [0; 1] не является счетным.

Проведем доказательство методом “от противного”. Предположим, что множество [0; 1] счетно, т.е. существует биекция N на [0; 1], и каждому элементу отрезка можно присвоить номер: N }. Каждый элемент отрезка [0; 1] представляется в виде бесконечной десятичной дроби , где j -я десятичная цифра i -го элемента. Запишем все элементы N, в порядке возрастания номеров. Покажем, что найдется элемент b, принадлежащий отрезку [0; 1], но не совпадающий ни с одним из занумерованных элементов N. Метод построения такого элемента называется диагональной процедурой Кантора и заключается в следующем. Будем строить элемент b в виде бесконечной десятичной дроби , где i -я десятичная цифра. В качестве возьмем любую цифру, не совпадающую с , – любую цифру, не совпадающую с , и т.д., при любых N (рис. 1.26). Построенный таким образом элемент b принадлежит отрезку[0; 1], но отличается от каждого из занумерованных элементов хотя бы одной цифрой. Следовательно, предположение о том, что существует биекция N ® [0; 1]ошибочно, и множество [0; 1] не является счетным.

Рис. 1.26. Диагональная процедура Кантора

 

Итак, мы показали, что ½ [0; 1]½ > ½ N ½, т.е. класс эквивалентности, которому принадлежит отрезок [0; 1], расположен правее класса À 0 счетных множеств в ряду мощностей (рис. 1.25). Обозначим этот класс À (без индекса). Множества, принадлежащие этому классу, называются несчетными или множествами мощности континуум (континуум – непрерывный). Этому классу принадлежат и интервал (0; 1), и множество R действительных чисел, и множество точек круга на плоскости.

Пример. Множество R имеет мощность континуума, т.к. равномощно отрезку [0; 1]. Действительно, по теореме Кантора-Бернштейна (см. 1.4.3) ½ [0; 1]½ = ½ (0; 1)½. Биекцию интервала (0; 1)на множество R можно задать с помощью сложной функции , где имеет вид и отображает интервал (0; 1)на интервал , а отображает интервал на R по закону .







Дата добавления: 2014-12-06; просмотров: 1026. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия