Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Принципы моделирования ионных кристаллов методом молекулярной динамики





Простейший алгоритм программы, реализующей моделирование ионных кристаллов (или других физических систем) методом молекулярной динамики, может быть представлен в форме, показанной на рис. 6.1.

Рис. 6.1. Блок-схема алгоритма молекулярной динамики

Заключается этот алгоритм в том, кристалл представляется системой недеформируемых, положительных и отрицательных, ионов, эволюционирующей во времени. Ионы перемещаются по законам Ньютона, а силы взаимодействия определяются парными потенциалами Uij (Rij).

Потенциалы Uij (Rij) имеют общий вид

,

где Qi, Qi, - заряды i -го и j -го ионов, R ij – расстояние между этими ионами, K E – константа закона Кулона, - некулоновский потенциал взаимо­действия электроновских оболочек.

Потенциалы представляют в различных формах, обычно включаю­щих в себя слагаемые, моделирующие отталкивание перекрываю­щихся электронных оболочек на малых расстояниях и дисперсионное притяжение на сравнительно больших. Наиболее известными из этих форм являются потенциал Букингема

и потенциал Леннарда-Джонса

.

В формуле А и В – константы, характеризующие отталкивание оболо­чек, С 6, С 8 – константы, описывающие дипольную и квадрупольную со­ставляющие дисперсионного притяжения. В формуле e - глубина мини­мума потенциала, а s - положение его нуля.

Перед началом расчёта ионам присваиваются некоторые начальные коорди­наты и скорости (например - координаты, соответствующие узлам идеальной кристаллической решётки моделируемого соединения и скорости, соответ­ствующие Максвелловскому распределению при заданной температуре), после чего начинается численное пошаговое интегрирование уравнений движения ионов во времени. На каждом k -ом шаге производятся следующие действия:

· Рассчитываются действующие на каждый ион силы

;

· Вычисляются новые скорости и новые координаты ионов

.

Формулы - справедливы при нулевых граничных условиях (конеч­ный кристаллит из N частиц в вакууме) без компенсации перемещения, вращения и дрейфа температуры, возникающих из-за вычислительных погрешностей (алгоритмы компенсации приведены ниже). Однако этих формул достаточно, чтобы показать возможность эффективного распаралле­ливания по схеме SIMD: очевидно, что основные этапы алгоритма заклю­чаются в проведении над каждым из ионов поочерёдно одних и тех же операций.

Наиболее критичным участком алгоритма является расчёт результирующих сил, действующих на каждый из ионов со стороны остальных. Этот расчёт необходим на каждом шаге молекулярной динамики, а его объём квадра­тичен по количеству частиц N, так как для каждой из N частиц необходимо выполнить суммирование сил, действующих со стороны N-1 остальных:

.

Поскольку для реалистичного моделирования модельные кристаллиты должны содержать десятки и сотни тысяч ионов, объём расчёта очень велик по сравнению с расчётами на остальных этапах алгоритма. Именно этот расчёт имеет смысл в первую очередь реализовать на графических процессорах. Нам такая реализация позволила на порядки ускорить молеку­лярно-динамичес­кое моделирование ионных кристаллов (диоксида урана).

6.2. Программирование графического процессора для расчёта действующих на ионы результирующих сил

Расчёт сил, действующих на ионы в молекулярной динамике, мы рассмотрим на конкретном примере нашего решения этой задачи. Структура исходных данных и алгоритм получения результата в данном случае несколько более сложны, чем в предыдущем примере сложения матриц. Прежде, чем переходить к анализу текстов программ, опишем подробнее исходные данные и ожидаемый результат.







Дата добавления: 2014-12-06; просмотров: 829. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия