Введение. В данном разделе рассматриваются некоторые вопросы методики прогнозирования деятельности структур, сущность основных понятий в области прогнозирования
В данном разделе рассматриваются некоторые вопросы методики прогнозирования деятельности структур, сущность основных понятий в области прогнозирования, анализ методов прогнозирования. После изучения данного раздела рекомендуется ответить на вопросы для самопроверки и на вопросы теста 3. В случае если ответы на какие-либо вопросы вызовут затруднение или неуверенность, рекомендуется прочитать учебное пособие Голик, Е.С. Теория и методы статистического прогнозирования: учебное пособие /Е.С. Голик, О.В. Афанасьева. – СПб.: Изд-во СЗТУ, 2007. – 182 с. (с.79 – 94). Часто на практике приходится иметь дело с задачей прогнозирования случайных величин, и это является предпосылкой применения вероятностных моделей. Вероятностные модели позволяют вычислить вероятность того, что будущее значение параметра прогнозируемого процесса будет меньше определенного числа, например, вероятность того, что
Величина y может находиться в пределах
Рис. 1. Функция распределения вероятностей
Показанная на рисунке кривая распределения непрерывной случайной величины y является графиком функции распределения Зная функцию распределения, можно найти вероятность попадания случайной величины на заданный участок
Для непрерывных случайных величин очень часто рассматривается производная функции распределения или плотность распределения непрерывной случайной величины y. Вероятность попадания случайной величины y на некоторый участок
Таким образом, прогнозирование вероятности того или иного события может быть осуществлено при прогнозировании рассмотренных функций распределения. Причем во многих практических случаях нет необходимости характеризовать случайную величину полностью, а бывает достаточно спрогнозировать только некоторые параметры распределения (например, математическое ожидание и дисперсию). В некоторых случаях полученные в результате наблюдений за прогнозируемым процессом данные могут быть описаны широко известными распределениями непрерывных и дискретных случайных величин, среди которых: нормальное распределение, равномерное распределение, экспоненциальное распределение, распределение Пуассона и некоторые другие. Если вид и параметры названных распределений не меняются по времени и в распоряжении имеется достаточное по объему количество наблюдений, то решение задачи прогнозирования не вызывает особых затруднений. Строится эмпирическое распределение, решается вопрос о выборе для данного эмпирического распределения теоретической кривой распределения и по ней с требуемой точностью производится прогнозирование. Однако на практике, как правило, в распоряжении исследователя имеется ограниченная информация о процессе, и, кроме того, не всегда можно гарантировать неизменность вида и параметров распределения. Эти условия предопределяют применение более сложных вероятностных моделей, базирующихся на последних достижениях теории вероятностей. К таким наиболее интенсивно разрабатываемым областям теории вероятностей относится, в частности. Теория малых выборок и теория суммирования случайного числа независимых случайных величин.
|