Введение. В данном разделе рассматриваются некоторые вопросы методики прогнозирования деятельности структур, сущность основных понятий в области прогнозирования
В данном разделе рассматриваются некоторые вопросы методики прогнозирования деятельности структур, сущность основных понятий в области прогнозирования, анализ методов прогнозирования. После изучения данного раздела рекомендуется ответить на вопросы для самопроверки и на вопросы теста 3. В случае если ответы на какие-либо вопросы вызовут затруднение или неуверенность, рекомендуется прочитать учебное пособие Голик, Е.С. Теория и методы статистического прогнозирования: учебное пособие /Е.С. Голик, О.В. Афанасьева. – СПб.: Изд-во СЗТУ, 2007. – 182 с. (с.79 – 94). Часто на практике приходится иметь дело с задачей прогнозирования случайных величин, и это является предпосылкой применения вероятностных моделей. Вероятностные модели позволяют вычислить вероятность того, что будущее значение параметра прогнозируемого процесса будет меньше определенного числа, например, вероятность того, что . Величина y может находиться в пределах , так как в соответствии с рис. 4.1 и Рис. 1. Функция распределения вероятностей
Показанная на рисунке кривая распределения непрерывной случайной величины y является графиком функции распределения . Функция распределения существует как для непрерывных, так и для дискретных случайных величин и является универсальной характеристикой случайных величин. Зная функцию распределения, можно найти вероятность попадания случайной величины на заданный участок : . Для непрерывных случайных величин очень часто рассматривается производная функции распределения или плотность распределения непрерывной случайной величины y. Вероятность попадания случайной величины y на некоторый участок . Таким образом, прогнозирование вероятности того или иного события может быть осуществлено при прогнозировании рассмотренных функций распределения. Причем во многих практических случаях нет необходимости характеризовать случайную величину полностью, а бывает достаточно спрогнозировать только некоторые параметры распределения (например, математическое ожидание и дисперсию). В некоторых случаях полученные в результате наблюдений за прогнозируемым процессом данные могут быть описаны широко известными распределениями непрерывных и дискретных случайных величин, среди которых: нормальное распределение, равномерное распределение, экспоненциальное распределение, распределение Пуассона и некоторые другие. Если вид и параметры названных распределений не меняются по времени и в распоряжении имеется достаточное по объему количество наблюдений, то решение задачи прогнозирования не вызывает особых затруднений. Строится эмпирическое распределение, решается вопрос о выборе для данного эмпирического распределения теоретической кривой распределения и по ней с требуемой точностью производится прогнозирование. Однако на практике, как правило, в распоряжении исследователя имеется ограниченная информация о процессе, и, кроме того, не всегда можно гарантировать неизменность вида и параметров распределения. Эти условия предопределяют применение более сложных вероятностных моделей, базирующихся на последних достижениях теории вероятностей. К таким наиболее интенсивно разрабатываемым областям теории вероятностей относится, в частности. Теория малых выборок и теория суммирования случайного числа независимых случайных величин.
|