Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методи цифрової фільтрації





На основі виразу згортки реалізуються цифрові фільтри зі скінченною імпульсною характеристикою (СІХ-фільтри, в англомовній літературі
FIR — finite impulse response, КИХ — рос.):

 

, . (8. 1)

 

Довжину імпульсної характеристики СІХ фільтрів можна зменшити у порівнянні з наведеною вже величиною М, вибираючи відповідне її значення таким, що забезпечується потрібна точність фільтрації.

Інший метод цифрової фільтрації базується на використанні прямого і оберненого перетворення Фур’є. Оскільки в частотній області , то, маючи відліки сиґналу , беремо від нього дискретне перетворення Фур’є, множимо результат цього перетворення на функцію передачі фільтра H і отримуємо Y, від якого беремо обернене перетворення Фур’є й отримуємо . На вхід цифрового фільтру подається і з виходу відбирається послідовності закодованих (двійковим кодом) значень відліків сигналу. Для того, щоб можна було використовувати такий алгоритм цифрової фільтрації, до сиґналів повинні ставитись певні вимоги. Наприклад, тривалість сиґналу має бути обмеженою, тоді легко виконувати перетворення Фур’є. Інакше потрібно використовувати вікна, для вирізання з " довгої" реалізації сиґналу окремих його вибірок. Це у свою чергу ставить вимогу до стаціонарності сигналу та його детермінованості.

Ще один метод цифрової фільтрації — рекурсивний обчислювальний метод розв’язування диференційного (difference — різниця, англ.) рівняння. Такі цифрові фільтри мають нескінченну імпульсну характеристику (НІХ, IIR — infinite impulse response, БИХ — рос.):

 

; . (8. 2)

 

Коли виконаємо z – перетворення від рівняння (8.2), то отримаємо вираз функції передачі фільтра:

 

. (8. 3)

 

Згортка отримується для представлення фільтру як системи типу вхід-вихід з міркувань, що система лінійна, отже має імпульсну характеристику і сума зсунутих відгуків на кожен вхідний відлік буде вихідним сиґналом. Тоді h — імпульсна характеристика системи, а обчислення згортки — метод побудови фільтра. У рекурсивному фільтрі застосовано метод розв’язування диференційного (різницевого) рівняння, дискретного варіанту неперервного, диференціального (differential) рівняння. Вираз нагадує дві згортки. Але , є параметри (коефіцієнти) різницевого рівняння, а не відліки імпульсної характеристики.

Описані методи цифрової фільтрації та методи, побудовані на ще інших представленнях лінійних систем (вхід-вихід, у просторі змінних стану, диференціальними рівняннями, хвилевими рівняннями тощо) є еквівалентними математично. Проте їх застосування при побудові алґоритмів цифрової обробки сиґналів чи зображень з врахуванням можливостей представлення даних та виконання операцій у процесорі приводить до різних практичних результатів. Різні алґоритми забезпечують різну точність, різну кількість необхідних операцій (складність), і відповідно різну швидкодію, різну розрядність даних та кількість коефіцієнтів, що виливається в обсяг пам’яті. Зрештою, реалізація певних видів обробки деякими методами є просто неможливою (внаслідок фізичних, енерґетичних чи інших обмежень), тоді як іншими — здійснюється з мінімальними затратами. Особливий випадок є використання фільтрації при розв’язанні некоректних задач, де в залежності від варіанту реалізації та параметрів фільтра розв’язок може " збігатися" або бути " розбіжним", нестійким.







Дата добавления: 2014-12-06; просмотров: 786. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия