Студопедия — ЛАБОРАТОРНАЯ РАБОТА №14
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЛАБОРАТОРНАЯ РАБОТА №14






УСТРОЙСТВО КРИСТАЛЛИЗАТОРОВ

 

Цель работы: Изучение конструкций кристаллизаторов.

Порядок выполнения работы:

1. Внимательно изучить основные конструкции кристаллизаторов.

2. Подготовить краткое описание содержания работы.

3. Ответить на контрольные вопросы.

 

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

 

Кристаллизация - один из распространенных и наиболее эффективных методов получения вещества в чистом виде.

Кристаллизацией называют процесс выделения твердой фазы в виде кристаллов из растворов и расплавов. Кристаллы представляют собой твердые тела различной геометрической формы, ограниченные плоскими гранями. Кристаллы, содержащие молекулы воды, называют кристаллогидратами. Кристаллизацию, как правило, проводят из водных растворов. При понижении температуры или удалении части растворителя уменьшается растворимость твердого вещества. Раствор становится перенасыщенным, и твердое вещество выпадает из раствори в осадок.

Производственный технологический процесс кристаллизации состоит из нескольких стадий: кристаллизация, отделение кристаллов от маточных растворов, перекристаллизация (если требуется), промывка и сушка кристаллов.

Кристаллизаторы по принципу действия делятся на аппараты периодического и непрерывного действия с отгонкой части растворителя и с охлаждением раствора. Кристаллизация с частичной отгонкой воды осуществляется в вакуум-аппаратах. Интересной разновидностью являются кристаллизаторы с псевдоожиженным слоем.

Вакуум-аппарат с естественной циркуляцией периодического действия с подвесной греющей камерой показан на рис. 1. Греющая камера состоит из двух конических трубчатых решеток, в которых развальцованы греющие трубы. По оси греющей камеры расположена циркуляционная труба. Между корпусом греющей камеры и стенками аппарата имеется кольцевое пространство, в котором циркулирует утфель.

В вакуум-аппаратах применяют специальное устройство для подвода пара в греющую камеру, которое воспринимает температурные деформации, возникающие при расширении греющей камеры и корпуса аппарата, и обеспечивает герметичность. Это устройство представляет собой конический патрубок, жестко соединенный с греющей камерой; с корпусом аппарата он соединен при помощи мембраны, воспринимающей температурные деформации.

Рис. 1 Вакуум-аппарат с подвесной греющей камерой:

греющей камерой:

1 — корпус; 2 — греющая камера; З — устройство для ввода пара; 4 — циркуляционная труба; 5 — днище; б — греющая труба; 7— сепаратор инерционного типа

Для улучшении циркуляции утфеля используют способ вдувания пара в нижнюю часть греющей камеры. Для этого под основной греющей камерой встраивают дополнительную греющую камеру с отверстиями для выхода пара. Пар, выходящий из трубок, поступает в греющие трубы основной камеры с большой скоростью, дробится на мелкие пузырьки и смешивается с утфелем, интенсифицируя тем самым циркуляцию.

Греющие камеры вакуум-аппаратов, применяемые в сахарном производстве, могут иметь различную конструкцию.

Распространение получили вакуум-аппараты с подвесными греющими камерами, верхние и нижние решетки которых выполняются коническими сферическими, двускатными и др. Пар поступает в межтрубчатое пространство греющих камер, а увариваемый продукт перемещается внутри труб.

Диаметр греющей камеры в большинстве конструкций вакуум-аппаратов меньше диаметра корпуса аппарата. Между стенками греющей камеры и корпусом вакуум-аппарата образуется кольцевое пространство, по которому циркулирует утфель.

На рис. 2 показаны конструкции наиболее, распространенных в сахарной промышленности греющих камер вакуум-аппаратов.

Сепарирующие устройства в вакуум-аппаратах, как и в выпарных аппаратах, предназначены для отделения от вторичною пара капель продукта. В вакуум-аппаратах продукт имеет большую вязкость, поэтому используются сепараторы инерционного типа, которые устанавливают над утфельным пространством в верхней части корпуса аппарата. К нижней части корпуса аппарата приваривают днище со спускным устройством для утфеля с гидравлическим и механическим управлением. Лучшими являются устройства клапанного типа.

Рис. 2 Схемы греющих камер вакуум-аппаратов:

а- с коническими трубными решетками (1 - верхняя трубная решетка; 2 — греющая труба; З — нижняя трубная решетка; 4 -циркуляционная труба); б конической двускатной формы (1-трубная решетка; 2 — труба для ввода продукта; З - наружная часть греющей камеры; 4—внутренняя часть греющей камеры; 5 — труба для отвода конденсата; б — карман для конденсата; 7-штуцер для подвода пара; 8—окно); в— без трубных решеток (7 надставка; 2 средняя часть греющей камеры; З — устройство для спуска утфеля; 4 труба для отвода конденсата; 5— карман; б— штуцер для подвода пара) Кристаллизаторы непрерывного действия состоят из концентратора, кристаллогенератора и камеры роста кристаллов. Конструкция аппарата должна обеспечивать интенсивную циркуляцию, препятствующую осаждению кристаллов в аппарате, улучшающую теплопередачу и обеспечивающую получение равномерных по величине кристаллов.

На рис. 3 представлен вакуумный кристаллизатор непрерывного действия, применяемый в сахарном производстве. Концентратор и кристаллогенератор выполнены в пиле кольцевых сегментов с трубчатой поверхностью нагрева. Концентратор герметически отделен от других узлов аппарата, что позволяет создавать в нем избыточное давление, не зависимое от давления в других частях аппарата. Кристаллогенератор верхней открытой частью соединен с надутфельным пространством камеры роста кристаллов. Камера роста кристаллов выполнена в виде цилиндра, снабженною типовой поверхностью нагрева. При помощи цилиндрической и радиальных перегородок она разделена на четыре секции.

Рис. 3 Кристаллизатор непрерывного действия:

1 — концентратор; 2—. труба; З— штурвал для регулирования положения трубы; 4 — кристаллогенератор; 5 — сливная труба; б — барботер; 7 — выгрузочное

устройство; 8— камера роста кристаллов При установившемся режиме патока поступает в концентратор и в камеру роста кристаллов. В концентраторе при повышении давления патока сгущается при температуре, превышающей температуру кристаллообразования на 10... 15 °С, поступает в кристаллогенератор, где она вскипает. При этом удаляется часть растворителя и снижается температура, что приводит, к резкому росту коэффициента пересыщения. При циркуляции патоки происходит интенсивное образование кристаллов. Содержание кристаллов регулируется величиной перегрева патоки в концентраторе и количеством подаваемого в кристаллогенератор пара.

Утфель, полученный в кристаллогенераторе, непрерывно поступает в первую секцию камеры роста кристаллов, куда также непрерывно поступает патока. Утфель перетекает из первой секции в четвертую, уваривается и через выгрузочное устройство непрерывно удаляется из аппарата. Управление работой аппарата осуществляется автоматически.

Простейшие кристаллизаторы периодического действия — вертикальные цилиндрические аппараты со змеевиками и механическими мешалками. Процесс кристаллизации в них ведется одновременно с охлаждением раствора.

В пищевой технологии применяют в основном дна типа кристаллизаторов: корытного типа и вращающиеся барабанные.

На рис. 4 показан кристаллизатор корытного типа с ленточной мешалкой. Вместо ленточной мешалки может использоваться шнековая мешалка, которая выполнена в виде бесконечного винта. Средний размер кристаллов в таких кристаллизаторах не превышает 0, 5...0, 6 мм.

Кристаллизаторы корытного типа довольно широко распространены в промышленности. Они просты в обслуживании и надежны в работе.

Рис. 4 Кристаллизатор с ленточной мешалкой:

1- корытообразный корпус; 2- водяная рубашка; 3- мешалка

Барабанные кристаллизаторы бывают с водяным и воздушным охлаждением. При воздушном охлаждении кристаллы получаются более крупными из-за низкого коэффициента теплоотдачи от раствора к воздуху, но при этом производительность кристаллизатора значительно ниже, чем при водяном охлаждении.

Барабанный кристаллизатор представляет собой вращающийся цилиндрический барабан, наклоненный по ходу раствора к горизонту (рис. 5). Раствор поступает с верхнего конца барабана, а кристаллы выгружаются с нижнего конца. При вращении барабана кристаллизатора раствор смачивает стенки, увеличивая тем самым площадь поверхности испарения воды. Барабан заключен в кожух, в который подаются охлаждающая вода либо воздух.

Теплоноситель движется в кожухе противотоком к раствору. Расход охлаждающей воды составляет примерно 5 м3 на 1 м3 раствора. Для предотвращения образования кристаллов на стенках в некоторых конструкциях предусмотрен обогрев нижней части барабана. Для этого в кожухе прокладывают обогревательные трубы.

Рис. 5 Барабанный кристаллизатор:

1-кожух; 2- барабан; 3- приемник суспензии; 4- ролик; 5- змеевик; 6- воронка

Кристаллизаторы с псевдоожиженным слоем позволяют интенсифицировать процесс. Кристаллизация может проводиться как с удалением чисти растворителя путем его испарения, так и при охлаждении раствора. Схема кристаллизатора приведена на рис. 6. Исходный раствор смешивается в циркуляционной трубе с циркулирующим маточным раствором, смесь нагревается в теплообменнике и поступает через трубу вскипания в аппарат, где происходит интенсивное парообразование. Пересыщенный раствор опускается в нижнюю часть кристаллизатора. Здесь в результате циркуляции раствора создается псевдоожиженный слой.

Рис. 6 Кристаллизатор с псевдоожиженым слоем:

1 — корпус; 2— труба вскипания; 3—сборник; 4— теплообменник; 5 — насос; б — циркуляционная труба; 7— центральная труба

Образовавшиеся крупные кристаллы (до 2 мм) оседают на дно и выводятся из аппарата, а мелкие продолжают расти либо удаляются через сборник 3. При интенсивном перемешивании суспензии в псевдоожиженном слое увеличивается скорость диффузии вещества в растворе и ускоряется процесс роста кристаллов. При этом уменьшается степень пересыщения раствора и скорость роста кристаллов оказывается большей, чем скорость образования центров кристаллизации. При кристаллизации в псевдоожиженном слое получают кристаллы более узкого фракционного состава, чем при других методах.

 

Многокорпусная вакуум-кристаллизационная установка (рис. 7) состоит из 3...4 вакуум-аппаратов с мешалками. Раствор из каждого нижерасположенного корпуса разрежения засасывается в вышерасположенный корпус. Каждый корпус оснащен поверхностным конденсатором и пароструйным насосом. Вакуум в последнем корпусе создается с помощью барометрического конденсатора. Поверхностные конденсаторы охлаждаются исходным раствором. Суспензия выгружается из последнего корпуса. Такие установки просты, экономичны и используются в крупнотоннажных производствах.

Рис. 7 Многокорпусная вакуум-кристаллизационная установка:

1 — вакуум-кристаллизаторы; 2 — поверхностные конденсаторы; З — пароструйный насос; 4 — барометрический конденсатор

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. В чем заключается сущность процесса кристаллизации? Каково назначение процесса?

2. Какими способами можно достигнуть пресыщения раствора?

3. Из каких стадий состоит кристаллизация?

4. Какие применяются кристаллизаторы для кристаллизации с отгонкой части растворителя? Чем они отличаются от выпарных аппаратов?

5. Какие кристаллизаторы применяют для кристаллизации с охлаждением раствора?

6. Назовите преимущества метода кристаллизации в псевдоожиженном слое.

7. Из каких основных узлов состоят многокорпусные вакуум-кристаллизационные установки?

 

 

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

 







Дата добавления: 2014-12-06; просмотров: 1858. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Studopedia.info - Студопедия - 2014-2024 год . (0.03 сек.) русская версия | украинская версия