Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение взаимного расположения плоскостей по их уравнениям





Следующая теорема показывает, как по общим уравнениям плоскостей можно определить тип их взаимного расположения.

Теорема 2.4.2. Пусть плоскости и заданы в некотором аффинном репере общими уравнениями:

 

(8)

(9)

Тогда верны следующие эквивалентности:

(i) плоскости и совпадают тогда и только тогда, когда существует ненулевое число такое, что (соответствующие коэффициенты уравнений прямых пропорциональны);

(ii) плоскости и параллельны тогда и только тогда, когда существует ненулевое число такое, что но (соответствующие коэффициенты уравнений при неизвестных пропорциональны, однако их отношение не равно отношению свободных членов);

(iii) плоскости и пересекаются по прямой тогда и только тогда, когда не существует числа такого, что (коэффициенты при неизвестных не пропорциональны).

Доказательство. Заметим, что как и в случае теоремы 2.3.2, достаточно доказать справедливость любых двух из трех пунктов теоремы 2.4.2. Тогда третий пункт будет справедлив, поскольку это единственная возможная альтернатива двум другим.

Докажем вначале теорему в случае, когда уравнения плоскостей даны в ортонормированном репере Как отмечено выше, в рассматриваемом случае векторы и – нормальные векторы соответственно для плоскостей и Очевидно, что плоскости совпадают или параллельны тогда и только тогда, когда их направляющие векторы коллинеарны, т.е. для некоторого ненулевого числа Это означает, что выполняются равенства:

 

(10)

т.е. коэффициенты при неизвестных пропорциональны. При условии (10) рассмотрим систему уравнений

 

(11)

Эта система задает пересечение плоскостей Очевидно, что плоскости параллельны тогда и только тогда, когда система (11) не имеет решений; плоскости совпадают тогда и только тогда, когда система (11) имеет бесконечно много решений. Подставляя во второе уравнение и вычитая из него первое уравнение, умноженное на получим, что следствием системы (11) является условие Это условие приводит к противоречию (система (11) не имеет решений), если Следовательно, если плоскости совпадают, то необходимо выполнение условий: Обратно, если соответствующие коэффициенты уравнений пропорциональны, то множества решений этих уравнений совпадают, т.е. Таким образом, доказана справедливость пунктов (i) и (ii), а, следовательно и всей теоремы 2.4.2 в случае ортонормированного репера.

Для завершения доказательства нам потребуется связь между уравнениями одной и той же плоскости в двух различных реперах. Пусть и – два репера и пусть плоскость в репере задана уравнением Воспользуемся формулами преобразования координат точек (формулы (2) или из § 2.1) при переходе от первого репера ко второму:

 

(12)

 

Подставив выражения из этих формул в исходное уравнение, получим уравнение плоскости в репере :

Таким образом, уравнение плоскости в репере имеет вид где

Теперь можно завершить доказательство теоремы. Пусть плоскости и заданы своими уравнениями (8) и (9) в произвольном аффинном репере Рассмотрим наряду с этим репером ортонормированный репер В таком случае формулы преобразования координат точек при переходе от репера к реперу имеют вид (12), причем: так как точки О и совпадают. Следовательно, уравнения плоскостей и в репере имеют вид:

где

(13)

Используя формулы преобразования координат при обратном переходе от репера к реперу получим формулы вида (13), выражающие нештрихованные коэффициенты уравнений плоскостей через штрихованные:

(14)

Здесь – элементы обратной матрицы для матрицы Формулы (13) и (14) показывают, все коэффициенты (или только коэффициенты при неизвестных) в уравнениях плоскостей в репере пропорциональны тогда и только тогда, когда они пропорциональны в уравнениях плоскостей в репере Это означает, что теорема справедлива в случае произвольного репера, поскольку для случая ортонормированного репера она доказана.

 







Дата добавления: 2014-12-06; просмотров: 1206. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия