Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальные уравнения Эйлера равновесия жидкости






 

В покоящейся однородной жидкости расположим декартовы оси координат произвольным образом. В первом квадранте выделим элементарный объем в виде параллелепипеда с ребрами dx, dy и dz, параллельными соответствующим осям координат (рис. 3.3). Предположим, что жидкость в нем затвердела. Тогда на грани параллелепипеда действуют силы давления dF1…6 от окружающей жидкости, а в его центре масс (точка О) приложена равнодействующая всех массовых сил dG. Для покоящейся жидкости dG является силой тяжести. При таких допущениях условия равновесия не нарушаются. Рассмотрим условия равновесия данного параллелепипеда для оси Х:

. (3.7)

 

Обозначим давление в центре масс параллелепипеда через р. Тогда в соответствии с уравнением (3.3) давление в точке приложения силы dF1 (точка А) будет равно . Соответственно, давление в точке приложения силы dF2 (точка В) давление будет равно . Так как площадь грани, на которую действует сила dF1, бесконечно мала, то давление в точках А и В можно считать средним гидростатическим давлением, действующим на соответствующие грани. Тогда:

 

, а .

 

Равнодействующая всех массовых сил dG равна:

 

dG=ρ dx dy dz j,

 

где j – ускорение, вызванное силой dG.

Тогда проекция dG на ось Х будет иметь вид:

 

dGх=ρ dx dy dz jх.

 

Подставим соответствующие значения проекций сил в уравнение (3.7) и разделим на ρ dx dy dz. В результате получим:

 

 

Проведя аналогичные рассуждения для осей Y и Z получим дифференциальные уравнения равновесия жидкости Эйлера:

(3.8)

 

Для удобства практического использования вместо системы уравнений (3.8) получим одно эквивалентное уравнение. Для этого умножим первое уравнение системы (3.8) на dx, втрое – на dy , третье – на dz и сложим эти уравнения. В результате получим:

 

(3.9)

 

Трехчлен, находящийся в скобках, является полным дифференциалом давления dp (см. 3.3). С учетом этого уравнение (3.9) примет вид:

 

(3.10)

 

Уравнение (3.10) получено Эйлером в 1755 г. называют дифференциальным уравнением равновесия жидкости или основным уравнением гидростатики в дифференциальной форме.

Уравнение (3.10) справедливо также и для газа при совместном использовании с уравнением Клапейрона – Менделеева (2.12).

 







Дата добавления: 2014-10-29; просмотров: 1402. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2022 год . (0.019 сек.) русская версия | украинская версия